Publications by authors named "Y Gokarn"

Weak protein interactions are associated with a broad array of biological functions and are often implicated in molecular dysfunction accompanying human disease. In addition, these interactions are a critical determinant in the effective manufacturing, stability, and administration of biotherapeutic proteins. Despite their prominence, much remains unknown about how molecular attributes influence the hydrodynamic and thermodynamic contributions to the overall interaction mechanism.

View Article and Find Full Text PDF

Thermal stability attributes including unfolding onset (T) and mid-point (T) are often utilized for efficient development of monoclonal antibody (mAb) products during lead selection and formulation screening workflows. An assumption of direct correlation between thermal and kinetic physical stability underpins this basic approach. While literature reports have substantiated this general approach under specific conditions, clear exceptions have been highlighted alongside.

View Article and Find Full Text PDF

Subcutaneous (subQ) injection is a common route for delivering biotherapeutics, wherein pharmacokinetics is largely influenced by drug transport in a complex subQ tissue microenvironment. The selection of good drug candidates with beneficial pharmacokinetics for subQ injections is currently limited by a lack of reliable testing models. To address this limitation, we report here a cutaneous Co-lture issue-on-a-chip for njection imulation (SubCuTIS).

View Article and Find Full Text PDF

There is significant interest in formulating antibody therapeutics as concentrated liquid solutions, but early identification of developable antibodies with optimal manufacturability, stability, and delivery attributes remains challenging. Traditional methods of identifying developable mAbs with low self-association in common antibody formulations require relatively concentrated protein solutions (>1 mg/mL), and this single challenge has frustrated early-stage and large-scale identification of antibody candidates with drug-like colloidal properties. Here, we describe charge-stabilized self-interaction nanoparticle spectroscopy (CS-SINS), an affinity-capture nanoparticle assay that measures colloidal self-interactions at ultradilute antibody concentrations (0.

View Article and Find Full Text PDF

Monoclonal antibody (mAb)-based drugs are often prone to unfavorable solution behaviors including high viscosity, opalescence, phase separation, and aggregation at the high concentrations needed to enable patient-centric subcutaneous dosage forms. Given that these can have a detrimental impact on manufacturability, stability, and delivery, approaches to identifying, monitoring, and controlling these behaviors during drug development are critical. Opalescence presents a significant challenge due to its relationship to liquid-liquid phase separation.

View Article and Find Full Text PDF