Publications by authors named "Y Fomin"

The crystal structure of the Kob-Andersen mixture has been probed by genetic algorithm calculations. The stable structures of the system with different molar fractions of the components have been identified, and their stability at finite temperatures has been verified. It has been found that the structures of composition ABn, where n = 2, 3, or 4, can be formed in the system.

View Article and Find Full Text PDF

It is well known that some thermodynamic quantities demonstrate maxima in the vicinity of a critical point. The lines of these maxima in the density-temperature or pressure-temperature planes are called "Widom lines." The behavior of Widom lines of one-component fluids has already been well studied in a number of papers by different authors.

View Article and Find Full Text PDF

Methanol as a basic liquid and the simplest alcohol is widely used in industry and scientific experiments. However, there are still no reliable data on the thermodynamic properties of methanol at high pressure. Here, we present an experimental and computational study of the thermodynamic properties of liquid methanol under high pressure up to 15 kbar, which significantly exceeds previously reported pressures.

View Article and Find Full Text PDF

The anomalous behavior of a two-dimensional system of Hertzian disks with exponent α=7/2 has been studied using the method of molecular dynamics. The phase diagram of this system is the melting line of a triangular crystal with several maxima and minima. Waterlike density and diffusion anomalies have been found in the reentrant melting regions.

View Article and Find Full Text PDF

Monolayer and two-dimensional (2D) systems exhibit rich phase behavior, compared with 3D systems, in particular, due to the hexatic phase playing a central role in melting scenarios. The attraction range is known to affect critical gas-liquid behavior (liquid-liquid in protein and colloidal systems), but the effect of attraction on melting in 2D systems remains unstudied systematically. Here, we have revealed how the attraction range affects the phase diagrams and melting scenarios in a 2D system.

View Article and Find Full Text PDF