Publications by authors named "Y Fichou"

Pulsed Dipolar ESR Spectroscopy (PDS) is a uniquely powerful technique to characterize the structural property of intrinsically disordered proteins (IDPs) and polymers and the conformational evolution of IDPs and polymers, e.g. during assembly, by offering the probability distribution of segment end-to-end distances.

View Article and Find Full Text PDF

Objective: Here, we sought to report ABO and D antigen distribution in blood donors from Yogyakarta, Java Island, Indonesia. Phenotype data (ABO/D) from donors who donated blood between January 1, 2018, and December 31, 2023, at the Yogyakarta Blood Donor Unit were extracted from the blood donor registry, and phenotype frequency was calculated subsequently.

Results: In the 245,307 blood donors collected over six years, ABO phenotype frequency: O (frequency: 38.

View Article and Find Full Text PDF
Article Synopsis
  • The Tau protein is linked to tauopathies like Alzheimer's and frontotemporal dementia, but the exact way it causes disease is still unclear.
  • Recent research shows that lipids play a crucial role in Tau's behavior, influencing its aggregation and interaction with cell membranes.
  • This study particularly focuses on the P301L mutation of Tau and how it disrupts membranes with phosphatidylserine lipids, revealing important insights into how Tau forms potentially harmful structures on the cell surface.
View Article and Find Full Text PDF

It is now generally accepted that macromolecules do not act in isolation but "live" in a crowded environment, that is, an environment populated by numerous different molecules. The field of molecular crowding has its origins in the far 80s but became accepted only by the end of the 90s. In the present issue, we discuss various aspects that are influenced by crowding and need to consider its effects.

View Article and Find Full Text PDF

Background: Single-nucleotide variants (SNVs) within gene coding sequences can significantly impact pre-mRNA splicing, bearing profound implications for pathogenic mechanisms and precision medicine. In this study, we aim to harness the well-established full-length gene splicing assay (FLGSA) in conjunction with SpliceAI to prospectively interpret the splicing effects of all potential coding SNVs within the four-exon SPINK1 gene, a gene associated with chronic pancreatitis.

Results: Our study began with a retrospective analysis of 27 SPINK1 coding SNVs previously assessed using FLGSA, proceeded with a prospective analysis of 35 new FLGSA-tested SPINK1 coding SNVs, followed by data extrapolation, and ended with further validation.

View Article and Find Full Text PDF