Publications by authors named "Y F Belyi"

Bacterial methionine biosynthesis is an attractive target for research due to its central role in cellular metabolism, as most steps of this pathway are missing in mammals. Up to now little is known about sulfur metabolism in pathogenic Clostridia species, making the study of the enzymes of Cys/Met metabolism in Clostridium tetani particularly relevant. Analysis of the C.

View Article and Find Full Text PDF

Clostridioides difficile causes a large proportion of nosocomial colon infections by producing toxins TcdA and TcdB as key virulence factors. TcdA and TcdB have analogous domain structures with a receptor-binding domain containing C-terminal combined repetitive oligopeptides (CROPs), an attractive target for the development of therapeutic antibodies. Here, we identify and characterize two potent neutralizing single-domain camelid anti-CROPsA antibodies, C4.

View Article and Find Full Text PDF

In a previous study, we demonstrated that the VirB4-like ATPase forms oligomers in vitro. In the current investigation, to study the observed phenomenon in more detail, we prepared a library of VirB4-derived peptides (delVirB4s) fused to a carrier maltose-binding protein (MBP). Using gel chromatography and polyacrylamide gel electrophoresis, we found a set of overlapping fragments that contribute most significantly to protein aggregation, which were represented as water-soluble oligomers with molecular masses ranging from ~300 kD to several megadaltons.

View Article and Find Full Text PDF

is a widespread Gram-negative bacterium occurring in water reservoirs and soils [...

View Article and Find Full Text PDF

Viscumin, a lectin used in anti-cancer therapy, was originally considered as βGal recognizing protein; later, an ability to bind 6'-sialyl N-acetyllactosamine (6'SLN) terminated gangliosides was found. Here we probed viscumin with a printed glycan array (PGA) containing a large number of mammalian sulfated glycans, and found a strong binding to glycans with 6-O-SuGal moiety as lactose, N-acetyllactosamine (LN), di-N-acetyllactosamine (LacdiNAc), and even 6-O-SuGalNAcα (but not SiaTn). Also, the ability to bind some of αGal terminated glycans, including Galα1-3Galβ1-4GlcNAc, was observed.

View Article and Find Full Text PDF