Publications by authors named "Y Eli"

Considerable research effort is currently being directed towards understanding the mechanisms mediating the antiproliferative effects of non-steroidal anti-inflammatory drugs (NSAIDs) and, more recently, of cyclooxygenase (COX)-2 inhibitors as well. A key question is whether NSAIDs (excluding sulindac) exert their anticarcinogenic effects in vivo by a mechanism that is dependent on their capacity to inhibit COX activity. Some studies with cultured tumor cells in vitro have argued against such a linkage, showing that NSAIDs inhibit cell replication and/or augment apoptosis only at concentrations that exceed those required to inhibit COX activities 10- to 100-fold.

View Article and Find Full Text PDF

A partially purified rat brain membrane phospholipase D (PLD) activity was characterized in a mixed micellar system consisting of 1-palmitoyl-2-[6-N-(7-nitrobenzo-2-oxa-1,3-diazol-4-yl)-amino]capr oyl-phosphatidylcholine (NBD-PC) and Triton X-100, under conditions where Triton X-100 has a surface dilution effect on PLD activity and the catalytic rate is dependent on the surface concentration (expressed in terms of molar ratio) of NBD-PC. PLD activity was specifically activated by phosphatidylinositol 4,5-bisphosphate (PIP2), and the curve of activation versus PIP2 molar ratio fitted a Michaelis-Menten equation with a K(act) value between molar ratios of 0.001-0.

View Article and Find Full Text PDF

We have previously reported the identification and partial characterization of a gene encoding a phospholipase D activity (PLD1) in the yeast, Saccharomyces cerevisiae. Here we report the existence of a second phospholipase D activity, designated PLD2, in yeast cells bearing disruption at the PLD1 locus. PLD2 is a Ca2+-dependent enzyme which preferentially utilizes phosphatidylethanolamine over phosphatidylcholine as a substrate.

View Article and Find Full Text PDF

We have identified an open reading frame on chromosome XI of the yeast, Saccharomyces cerevisiae, as encoding a protein with phospholipase D (PLD) activity. We have named this open reading frame, PLD1, and show that yeast bearing a disruption in this gene are unable to catalyze the hydrolysis of phosphatidylcholine. PLD1 encodes a hypothetical protein of 1683 amino acids and has a predicted molecular mass of 195 kDa.

View Article and Find Full Text PDF

The activation of phospholipase D (PLD) by platelet-derived growth factor (PDGF), prostaglandin F2 alpha and 12-O-tetradecanoylphorbol 13-acetate (TPA) was studied in NIH-3T3 fibroblasts. PLD activation was determined by measuring the production of both [3H]phosphatidic acid and [3H]phosphatidylpropanol (products of the PLD-catalyzed hydrolysis and transphosphatidylation reactions, respectively), in cells that were metabolically pre-labeled with [3H]oleic acid. All mitogens caused a rapid (within 2 min) activation of PLD.

View Article and Find Full Text PDF