Publications by authors named "Y Eidelman"

The long-standing question in radiation and cancer biology is how principles of chromosome organization impact the formation of chromosomal aberrations (CAs). To address this issue, we developed a physical modeling approach and analyzed high-throughput genomic data from chromosome conformation capture (Hi-C) and translocation sequencing (HTGTS) methods. Combining modeling of chromosome structure and of chromosomal aberrations induced by ionizing radiation (IR) and nuclease we made predictions which quantitatively correlated with key experimental findings in mouse chromosomes: chromosome contact maps, high frequency of cis-translocation breakpoints far outside of the site of nuclease-induced DNA double-strand breaks (DSBs), the distinct shape of breakpoint distribution in chromosomes with different 3D organizations.

View Article and Find Full Text PDF

Experiments with full-colour mFISH chromosome painting have revealed high yield of radiation-induced complex chromosomal aberrations (CAs). The ratio of complex to simple aberrations is dependent on cell type and linear energy transfer. Theoretical analysis has demonstrated that the mechanism of CA formation as a result of interaction between lesions at a surface of chromosome territories does not explain high complexes-to-simples ratio in human lymphocytes.

View Article and Find Full Text PDF

Radiation induces chromosome aberrations (CA) that are detected in the first post-irradiation cell cycle and in descendants of irradiated cells. Unstable aberrations in the progeny of exposed cells are referred to as one of the hallmarks of chromosomal instability (CIN). One of the important questions is what is the relationship between the dose response for radiation-induced CA and delayed CA, or CIN.

View Article and Find Full Text PDF