An altered gut microbiota is associated with type 1 diabetes (T1D), affecting the production of short-chain fatty acids (SCFA) and glucose homeostasis. We previously demonstrated that enhancing serum acetate and butyrate using a dietary supplement (HAMSAB) improved glycemia in non-obese diabetic (NOD) mice and patients with established T1D. The effects of SCFA on immune-infiltrated islet cells remain to be clarified.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2023
Introduction: Type 1 diabetes (T1D) is defined by immune cell infiltration of the pancreas, in particular the islets of Langerhans, referred to as insulitis, which is especially prominent during the early disease stages in association with decreased beta cell mass. An in-depth understanding of the dynamics and phenotype of the immune cells infiltrating the pancreas and the accompanying changes in their profiles in peripheral blood during T1D development is critical to generate novel preventive and therapeutic approaches, as well as to find biomarkers for the disease process.
Methods: Using multi-parameter flow cytometry, we explored the dynamic changes of immune cells infiltrating the pancreas and the pancreatic draining lymph nodes (PLN), compared to those in peripheral blood in female and male non-obese diabetic (NOD) mice during T1D progression.
Front Endocrinol (Lausanne)
November 2022
Background: Restoration of immune tolerance to disease-relevant antigens is an appealing approach to prevent or arrest an organ-specific autoimmune disease like type 1 diabetes (T1D). Numerous studies have identified insulin as a key antigen of interest to use in such strategies, but to date, the success of these interventions in humans has been inconsistent. The efficacy of antigen-specific immunotherapy may be enhanced by optimising the dose, timing, and route of administration, and perhaps by the inclusion of adjuvants like alum.
View Article and Find Full Text PDFPost-translational modifications can lead to a break in immune tolerance in autoimmune diseases such as type 1 diabetes (T1D). Deamidation, the conversion of glutamine to glutamic acid by transglutaminase (TGM) enzymes, is a post-translational modification of interest, with deamidated peptides being reported as autoantigens in T1D. However, little is known about how , the most ubiquitously expressed isoform, is regulated and how tolerance against deamidated peptides is lost.
View Article and Find Full Text PDFIntroduction: Aberrant citrullination and excessive peptidylarginine deiminase (PAD) activity are detected in numerous challenging autoimmune diseases such as rheumatoid arthritis, inflammatory bowel diseases, systemic lupus erythematosus, multiple sclerosis, and type 1 diabetes. Because excessive PAD activity is a common denominator in these diseases, PADs are interesting potential therapeutic targets for future therapies.
Areas Covered: This review summarizes the advances made in the design of PAD inhibitors, their utilization and therapeutic potential in preclinical mouse models of autoimmunity.