Publications by authors named "Y Dufour"

Unlabelled: uses short-range C-signaling to coordinate multicellular mound formation with sporulation during fruiting body development. A mutant deficient in C-signaling can cheat on wild type (WT) in mixtures and form spores disproportionately, but our understanding of cheating behavior is incomplete. We subjected mixtures of WT and cells at different ratios to co-development and used confocal microscopy and image analysis to quantify the arrangement and morphology of cells.

View Article and Find Full Text PDF

FliL is an essential component of the flagellar machinery in some bacteria, but a conditional one in others. The conditional role is for optimal swarming in some bacteria. During swarming, physical forces associated with movement on a surface are expected to exert a higher load on the flagellum, requiring more motor torque to move.

View Article and Find Full Text PDF

FliL is an essential component of the flagellar machinery in some bacteria, but a conditional one in others. The conditional role is for optimal swarming in some bacteria. During swarming, physical forces associated with movement on a surface are expected to exert a higher load on the flagellum, requiring more motor torque to move.

View Article and Find Full Text PDF

Starving bacteria use short-range C-signaling to coordinate their movements and construct multicellular mounds, which mature into fruiting bodies as rods differentiate into spherical spores. Differentiation requires efficient C-signaling to drive the expression of developmental genes, but how the arrangement of cells within nascent fruiting bodies (NFBs) affects C-signaling is not fully understood. Here, we used confocal microscopy and cell segmentation to visualize and quantify the arrangement, morphology, and gene expression of cells near the bottom of NFBs at much higher resolution than previously achieved.

View Article and Find Full Text PDF

Bacteria adopt a wide variety of sizes and shapes, with many species exhibiting stereotypical morphologies. How morphology changes, and over what timescales, is less clear. Previous work examining cell morphology in an experiment with showed that populations evolved larger cells and, in some cases, cells that were less rod-like.

View Article and Find Full Text PDF