Magnetic skyrmions are two-dimensional non-collinear spin textures characterized by an integer topological number. Room-temperature skyrmions were recently found in magnetic multilayer stacks, where their stability was largely attributed to the interfacial Dzyaloshinskii-Moriya interaction. The strength of this interaction and its role in stabilizing the skyrmions is not yet well understood, and imaging of the full spin structure is needed to address this question.
View Article and Find Full Text PDFMagnetic resonance imaging (MRI) has revolutionized biomedical science by providing non-invasive, three-dimensional biological imaging. However, spatial resolution in conventional MRI systems is limited to tens of micrometres, which is insufficient for imaging on molecular scales. Here, we demonstrate an MRI technique that provides subnanometre spatial resolution in three dimensions, with single electron-spin sensitivity.
View Article and Find Full Text PDFWe measure the interdot charge relaxation time T1 of a single electron trapped in an accumulation mode Si/SiGe double quantum dot. The energy level structure of the charge qubit is determined using photon assisted tunneling, which reveals the presence of a low-lying excited state. We systematically measure T1 as a function of detuning and interdot tunnel coupling and show that it is tunable over four orders of magnitude, with a maximum of 45 μs for our device configuration.
View Article and Find Full Text PDF