Publications by authors named "Y Dillen"

Fibroblast activation protein-α (FAPα) is a membrane protein with dipeptidyl-peptidase and type I collagenase activity and is expressed during fetal growth. At the age of adolescence, FAPα expression is greatly reduced, only emerging in pathologies associated with extracellular matrix remodeling. We determined whether FAPα is expressed in human dental tissue involved in root maturation i.

View Article and Find Full Text PDF

Adult neurogenesis in the subventricular zone is a topic of intense research, since it has vast implications for the fundamental understanding of the neurobiology of the brain and its potential to being harnessed for therapy in various neurological disorders. Investigation of adult neurogenesis has been complicated by the difficulties with characterization of neural stem cells in vivo. However, recent single-cell transcriptomic studies provide more detailed information on marker expression in neural stem cells and their neuronal lineage, which hopefully will result in a more unified discussion.

View Article and Find Full Text PDF

Pathologies of the central nervous system are characterized by loss of brain tissue and neuronal function which cannot be adequately restored by endogenous repair processes. This stresses the need for novel treatment options such as cell-based therapies that are able to restore damaged tissue or stimulate repair. This study investigated the neuroregenerative potential of the conditioned medium of human dental pulp stem cells (CM-hDPSCs) on neural stem cell (NSC) proliferation and migration as well as on neurite outgrowth of primary cortical neurons (pCNs).

View Article and Find Full Text PDF

Dental pulp is a highly vascularized and innervated tissue containing a heterogeneous stem cell population with multilineage differentiation potential. Current endodontic treatments focus on the preservation of the pulp tissue and the regeneration of dental pulp after pathological insults. Human dental pulp stem cells (hDPSCs) are currently investigated as stem cell-based therapy for pulp regeneration and for peripheral nerve injury in which neurons and Schwann cells display limited regenerative capacity.

View Article and Find Full Text PDF

Neurological disorders are characterized by neurodegeneration and/or loss of neuronal function, which cannot be adequately repaired by the host. Therefore, there is need for novel treatment options such as cell-based therapies that aim to salvage or reconstitute the lost tissue or that stimulate host repair. The present study aimed to evaluate the paracrine effects of human dental pulp stem cells (hDPSCs) on the migration and neural maturation of human SH-SY5Y neuroblastoma cells.

View Article and Find Full Text PDF