Publications by authors named "Y Danten"

Understanding structure-property relationship in redox-active molecular species is of central importance in various fields, including many medicinal and chemical applications. The quest for performant organic electrodes in the context of energy storage calls for pioneering studies to develop new and possibly optimal materials. Beyond modifying the molecular design of the existing compounds through functionalization, expansion of the search enabling the advent of efficient new backbones can potentially lead to breakthroughs in this research area.

View Article and Find Full Text PDF

Extracting─from the vast space of organic compounds─the best electrode candidates for achieving energy material breakthrough requires the identification of the microscopic causes and origins of various macroscopic features, including notably electrochemical and conduction properties. As a first guess of their capabilities, molecular DFT calculations and quantum theory of atoms in molecules (QTAIM)-derived indicators were applied to explore the family of pyrano[3,2-]pyran-2,6-dione (PPD, , A0) compounds, expanded to A0 fused with various kinds of rings (benzene, fluorinated benzene, thiophene, and merged thiophene/benzene). A glimpse of up-to-now elusive key incidences of introducing oxygen in vicinity to the carbonyl redox center within 6MRs─as embedded in the A0 core central unit common to all A-type compounds─has been gained.

View Article and Find Full Text PDF

Material design enters an era in which control of electrons in atoms, molecules, and materials is an essential property to be predicted and thoroughly understood in view of discovering new compounds with properties optimized toward specific optical/optoelectronic applications. π-electronic delocalization and charge separation/recombination enter notably into the set of features that are highly desirable to tailor. Diverse domains are particularly relying on photoinduced electron-transfer (PET), including fields of paramount importance such as energy production through light-harvesting, efficient chemoreceptive sensors, or organic field-effect transistors.

View Article and Find Full Text PDF

A model for decomposing the Le Bahers, Adamo, and Ciofini Charge Transfer (CT) Excitations global indexes ( 2011, 7, 2498-2506) into molecular subdomains contributions is presented and a software, DOCTRINE (atomic group Decomposition Of the Charge TRansfer INdExes) for the implementation of this novel model has been coded. Although our method applies to any fuzzy or to any disjoint exhaustive partitioning of the real space, it is here applied using a definition of chemically relevant molecular subdomains based on the Atoms in Molecules Bader basins. This choice has the relevant advantage of associating or subdomain contributions to rigorously defined quantum objects, yet bearing a clear chemical meaning.

View Article and Find Full Text PDF