Within the framework of the ESRF Phase I Upgrade Programme, a new state-of-the-art synchrotron beamline ID16B has been recently developed for hard X-ray nano-analysis. The construction of ID16B was driven by research areas with major scientific and societal impact such as nanotechnology, earth and environmental sciences, and bio-medical research. Based on a canted undulator source, this long beamline provides hard X-ray nanobeams optimized mainly for spectroscopic applications, including the combination of X-ray fluorescence, X-ray diffraction, X-ray excited optical luminescence, X-ray absorption spectroscopy and 2D/3D X-ray imaging techniques.
View Article and Find Full Text PDFTomography is a standard and invaluable technique that covers a large range of length scales. It gives access to the inner morphology of specimens and to the three-dimensional (3D) distribution of physical quantities such as elemental composition, crystalline phases, oxidation state, or strain. These data are necessary to determine the effective properties of investigated heterogeneous media.
View Article and Find Full Text PDFWe present a new diamond anvil cell (DAC), hereafter called the fluoX DAC, dedicated for x-ray fluorescence (XRF) analysis of trace elements in fluids under high pressure and high temperature to 10 GPa and 1273 K at least. This new setup has allowed measurement of Rb, Sr, Y, Zr, with concentrations of 50 ppm to 5.6 GPa and 1273 K.
View Article and Find Full Text PDFA new state-of-the art synchrotron beamline fully optimized for monochromatic X-ray diffraction at high pressure and high (or low) temperature is presented. In comparison with the old high-pressure beamline ID30, this new beamline exhibits outstanding performance in terms of photon flux and focusing capabilities. The main components of this new instrument will be described in detail and compared with the performance of beamline ID30.
View Article and Find Full Text PDFWe present in this paper two imaging techniques using contrast agents assessed with in vivo experiments. Both methods are based on the same physical principle, and were implemented at the European Synchrotron Radiation Facility medical beamline. The first one is intravenous coronary angiography using synchrotron radiation X-rays.
View Article and Find Full Text PDF