Background: Sepsis and acute respiratory distress syndrome (ARDS) are common inflammatory conditions in intensive care, with ARDS significantly increasing mortality in septic patients. PANoptosis, a newly discovered form of programmed cell death involving multiple cell death pathways, plays a critical role in inflammatory diseases. This study aims to elucidate the PANoptosis-related genes (PRGs) and their involvement in the progression of sepsis to ARDS.
View Article and Find Full Text PDFModularly organizing active micromachines into high-grade metamachines makes a great leap for operating the microscopic world in a biomimetic way. However, modulating the nonreciprocal interactions among different colloidal motors through chemical reactions to achieve the controllable construction of active colloidal metamachines with specific dynamic properties remains challenging. Here, we report the phototactic active colloidal metamachines constructed by shape-directed dynamic self-assembly of chemically driven peanut-shaped TiO colloidal motors and Janus spherical Pt/SiO colloidal motors.
View Article and Find Full Text PDFEur J Trauma Emerg Surg
January 2025
Background: Complicated wrist amputation caused by severe trauma poses a real challenge for orthopedic and hand surgeons. This study aimed to evaluate a procedure of ulnoradial-metacarpal reconstruction as a rescue option in this challenging situation.
Methods: In total, 12 patients with complicated wrist amputation induced by serious injury were selected from 2015 to 2020 and followed up for 1∼6 years at a level 1 trauma center.
Objectives: To compare an MRI-based radiomics signature with the programmed cell death ligand 1 (PD-L1) expression score for predicting immunotherapy response in nasopharyngeal carcinoma (NPC).
Methods: Consecutive patients with NPC who received immunotherapy between January 2019 and June 2022 were divided into training (n = 111) and validation (n = 66) sets. Tumor radiomics features were extracted from pretreatment MR images.
Superhydrophobic paper-based functional materials have emerged as a sustainable solution with a wide range of applications due to their unique water-repelling properties. Inspired by natural examples like the lotus leaf, these materials combine low surface energy with micro/nanostructures to create air pockets that maintain a high contact angle. This review provides an in-depth analysis of recent advancements in the development of superhydrophobic paper-based materials, focusing on methodologies for modification, underlying mechanisms, and performance in various applications.
View Article and Find Full Text PDF