Publications by authors named "Y Coquerel"

Electron delocalization is studied in the ground singlet and first excited triplet states of azulene-containing helicenes. After showing that the compounds we study can be synthesized, we show that they exhibit a charge separation in the ground state, which does not appear in their triplet excited state. Then, magnetically induced properties (IMS3D and ACID) and electron density decomposition methods (EDDB) are used to rationalize aromaticity in these systems.

View Article and Find Full Text PDF

Herein, we report the first 1,4-Pd aryl to aryl migration/Miyaura borylation tandem reaction in fused systems. The Pd shift occurred in the bay region of the dibenzo[,]chrysene building blocks, giving rise to a thermodynamically controlled mixture of 1,8- and 1,9-borylated compounds that allowed the preparation of regioisomeric azaborole multihelicenes from the same starting material. The outcome of this synthesis can be controlled by the choice of reaction conditions, allowing the migration process to be turned off in the absence of an acetate additive and the target multiheterohelicenes to be prepared in a regioselective manner.

View Article and Find Full Text PDF

Electron delocalization and aromaticity was comparatively evaluated in recently synthesized figure-eight molecules made of two condensed U-shaped polycyclic aromatic hydrocarbon moieties connected either by two single bonds or by two para-phenylene groups. The selected examples include molecules that incorporate eight-membered and sixteen-membered rings, as well as a doubly [5]helicene-bridged (1,4)cyclophane. We probe whether some electron delocalization could occur through the stereogenic single bonds in these molecules: Is aromaticity purely (semi-)local, or possibly also global in these molecules? It was concluded that the situation can go from a purely (semi-)local character when the dihedral angle at the connecting single bonds is large, such as in biphenyl, to a predominantly (semi-)local character with a minor global contribution when the dihedral angle is small, such as in the para-phenylene connectors of the [5] helicene-bridged cyclophane.

View Article and Find Full Text PDF

This combined experimental and theoretical study illustrates the profound consequences of non-planarity on the electronic properties of polycyclic arenes. Three isomeric [10]fibonacene tetraesters were synthesized through a robust and regiocontrolled Perkin/Mallory approach: a nearly planar [10]phenacene derivative, a moderately twisted [10]semicircle derivative, and a 3D non-planar [10]helicene derivative. The photophysical properties of the 3D [10]helicene isomer were found to be dramatically different from the comparable ones of the [10]phenacene and [10]semicircle isomers.

View Article and Find Full Text PDF

Recently, the synthesis of the racemate of an overcrowded triply fused carbo[7]helicene of formula CH with three carbo[7]helicenes fused within a central six-membered ring was described. This molecule was found to embed an extremely contorted central six-membered ring and two negative curvatures. We report herein the resolution of the corresponding enantiomers and their conformational, structural, photophysical, and chiroptical properties.

View Article and Find Full Text PDF