A novel and fast time-domain quantitation algorithm--quantitation based on semi-parametric quantum estimation (QUEST)--invoking optimal prior knowledge is proposed and tested. This nonlinear least-squares algorithm fits a time-domain model function, made up from a basis set of quantum-mechanically simulated whole-metabolite signals, to low-SNR in vivo data. A basis set of in vitro measured signals can be used too.
View Article and Find Full Text PDFQuantitation of 1H short echo-time signals is often hampered by a background signal originating mainly from macromolecules and lipids. While the model function of the metabolite signal is known, that of the macromolecules is only partially known. We present time-domain semi-parametric estimation approaches based on the QUEST quantitation algorithm (QUantitation based on QUantum ESTimation) and encompassing Cramér-Rao bounds that handle the influence of 'nuisance' parameters related to the background.
View Article and Find Full Text PDF