Publications by authors named "Y Carlomagno"

Article Synopsis
  • Genetic variation in the TMEM106B gene is linked to the risk and progression of frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP), with a specific genotype (rs3173615) associated with longer survival after symptoms begin.
  • Research shows that the protective genotype is linked to lower accumulation of TMEM106B filaments, while the risk allele correlates with increased TMEM106B core deposition and enhanced TDP-43 dysfunction.
  • The findings indicate that managing the accumulation of TMEM106B filaments may be a crucial factor in reducing disease risk and slowing down the progression of FTLD-TDP.
View Article and Find Full Text PDF

Spinocerebellar ataxia type 3 (SCA3) is a dominantly inherited cerebellar ataxia caused by the expansion of a polyglutamine (polyQ) repeat in the gene encoding ATXN3. The polyQ expansion induces protein inclusion formation in the neurons of patients and results in neuronal degeneration in the cerebellum and other brain regions. We used adeno-associated virus (AAV) technology to develop a new mouse model of SCA3 that recapitulates several features of the human disease, including locomotor defects, cerebellar-specific neuronal loss, polyQ-expanded ATXN3 inclusions, and TDP-43 pathology.

View Article and Find Full Text PDF

Misfolding and aggregation of disease-specific proteins, resulting in the formation of filamentous cellular inclusions, is a hallmark of neurodegenerative disease with characteristic filament structures, or conformers, defining each proteinopathy. Here we show that a previously unsolved amyloid fibril composed of a 135 amino acid C-terminal fragment of TMEM106B is a common finding in distinct human neurodegenerative diseases, including cases characterized by abnormal aggregation of TDP-43, tau, or α-synuclein protein. A combination of cryoelectron microscopy and mass spectrometry was used to solve the structures of TMEM106B fibrils at a resolution of 2.

View Article and Find Full Text PDF

The aberrant translation of a repeat expansion in chromosome 9 open reading frame 72 (), the most common cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), results in the accumulation of toxic dipeptide repeat (DPR) proteins in the central nervous system We have found that, among the sense DPR proteins, HDAC6 specifically interacts with the poly (GA) and co-localizes with inclusions in both patient tissue and a mouse model of this disease (c9FTD/ALS). Overexpression of HDAC6 increased poly (GA) levels in cultured cells independently of HDAC6 deacetylase activity, suggesting that HDAC6 can modulate poly (GA) pathology through a mechanism that depends upon their physical interaction. Moreover, decreasing HDAC6 expression by stereotaxic injection of antisense oligonucleotides significantly reduced the number of poly (GA) inclusions in c9FTD/ALS mice.

View Article and Find Full Text PDF