Fundamental information on the behavior of excited chlorophyll molecules packed within the confinements of nanosized photosystems I and II, following absorption of light, is presented. Using a 100 femtosecond laser with nanojoule (nJ) pulse energy and a one picosecond streak camera, we observed the light emitted from the nanostructured photosystems without oscillations or hops. The fluorescent exponential decay profiles and high efficiency within the nanostructure suggest that light coherently drains out as a unit.
View Article and Find Full Text PDFA new nonlinear optical process, named enhanced stimulated Raman scattering (ESRS), is reported for the first time from resonance Raman in β-carotene-methanol solution. It is well known that absorption decreases the efficiency of the nonlinear optical and laser processes; however, we observed enhanced stimulated Raman peaks at the first and second Stokes from methanol solvent at 2834 cm with the addition of β-carotene solutes. This enhanced SRS effect in methanol is attributed to the resonance Raman (RR) process in β-carotene, which creates a significant number of vibrations from RR and the excess vibrations are transferred to methanol from anharmonic vibrational interactions between the β-carotene solutes and the methanol solvent, and consequently leads to the increased Raman gain.
View Article and Find Full Text PDFStimulated Raman scattering (SRS) is a powerful optical technique for probing the vibrational states of molecules in biological tissues and provides greater signal intensities than when using spontaneous Raman scattering. In this study, we examined the use of continuous wave (cw) and picosecond (ps) laser excitations to generate SRS signals in pure methanol, a carotene-methanol solution, acetone, and brain tissue samples. The cw-SRS system, which utilized two cw lasers, produced better signal-to-noise (S/N) than the conventional ps-SRS system, suggesting that the cw-SRS system is an efficient and cost-effective approach for studying SRS in complex systems like the brain.
View Article and Find Full Text PDFTime resolved spectroscopic measurements with single-photon and multi-photon excitation of native molecules were performed ex vivo on brain tissues from an Alzheimer's disease (AD) and a wild type (WT) mouse model using a streak camera. The fluorescence decay times of native NADH and FAD show a longer relaxation time in AD than in WT tissue, suggesting less non-radiative processes in AD. The longer emission time of AD may be attributed to the coupling of the key native building block molecules to the amyloid-tau and/or to the caging of the native fluorophores by the deposition of amyloid-beta or tau plaques and neurofibrillary tangles that affect the local non-radiative interactions.
View Article and Find Full Text PDFWith the use of longer near-infrared (NIR) wavelengths, image quality can be increased due to less scattering (described by the inverse wavelength power dependence 1/λ(n) where n ≥ 1 ) and minimal absorption from water molecules. Longer NIR windows, known as the second (1100 nm to 1350 nm) and third (1600 to 1870 nm) NIR windows are utilized to penetrate more deeply into tissue media and produce high-quality images. An NIR supercontinuum (SC) laser light source, with wavelengths in the second and third NIR optical windows to image tissue provides ballistic imaging of tissue.
View Article and Find Full Text PDF