Publications by authors named "Y Bouhlal"

In patients with invasive breast cancer, fluorescence in situ hybridization (FISH) testing for HER2 typically demonstrates the clear presence or lack of ERBB2 (HER2) amplification (i.e., groups 1 or 5).

View Article and Find Full Text PDF

Next-generation deep sequencing of gene panels is being adopted as a diagnostic test to identify actionable mutations in cancer patient samples. However, clinical samples, such as formalin-fixed, paraffin-embedded specimens, frequently provide low quantities of degraded, poor quality DNA. To overcome these issues, many sequencing assays rely on extensive PCR amplification leading to an accumulation of bias and artifacts.

View Article and Find Full Text PDF

Background: Autosomal recessive cerebellar ataxias (ARCA) are a complex group of neurodegenerative disorders with high clinical and genetic heterogeneity. In most cases, the cerebellar ataxia is not pure, and complicating clinical features such as pyramidal signs or extraneurological features are found.

Objective: To identify the genetic origin of the cerebellar ataxia for 3 consanguineous North African families presenting with ARCA.

View Article and Find Full Text PDF

Ataxia with vitamin E deficiency is an autosomal recessive cerebellar ataxia caused by mutations in the α-tocopherol transfer protein coding gene localized on chromosome 8q, leading to lower levels of serum vitamin E. More than 91 patients diagnosed with ataxia with vitamin E deficiency have been reported worldwide. The majority of cases originated in the Mediterranean region, and the 744delA was the most common mutation among the 22 mutants previously described.

View Article and Find Full Text PDF

When applying genome-wide sequencing technologies to disease investigation, it is increasingly important to resolve sequence variation in regions of the genome that may have homologous sequences. The human mitochondrial genome challenges interpretation given the potential for heteroplasmy, somatic variation, and homologous nuclear mitochondrial sequences (numts). Identical twins share the same mitochondrial DNA (mtDNA) from early life, but whether the mitochondrial sequence remains similar is unclear.

View Article and Find Full Text PDF