We describe here the development, verification and validation of the SLE-key(®) rule-out test for a definitive rule-out of a diagnosis of systemic lupus erythematosus (SLE). The test uses the proprietary iCHIP(®) micro-array technology platform (Fattal et al., 2010) to identify discriminating patterns of circulating autoantibodies among SLE patients compared with self-declared healthy individuals.
View Article and Find Full Text PDFN-type voltage-dependent Ca(2+) channels (N-VDCCs) play important roles in neurotransmitter release and certain postsynaptic phenomena. These channels are modulated by a number of intracellular factors, notably by Gbetagamma subunits of G proteins, which inhibit N-VDCCs in a voltage-dependent (VD) manner. Here we show that an increase in intracellular Na(+) concentration inhibits N-VDCCs in hippocampal pyramidal neurones and in Xenopus oocytes.
View Article and Find Full Text PDFHuman L-type voltage-dependent Ca(2+) channels (alpha(1C), or Ca(v)1.2) are up-regulated by protein kinase C (PKC) in native tissues, but in heterologous systems this modulation is absent. In rat and rabbit, alpha(1C) has two N-terminal (NT) isoforms, long and short, with variable initial segments of 46 and 16 amino acids, respectively.
View Article and Find Full Text PDFNeuronal voltage-dependent Ca(2+) channels of the N (alpha(1B)) and P/Q (alpha(1A)) type are inhibited by neurotransmitters that activate G(i/o) G proteins; a major part of the inhibition is voltage-dependent, relieved by depolarization, and results from a direct binding of Gbetagamma subunit of G proteins to the channel. Since cardiac and neuronal L-type (alpha(1C)) voltage-dependent Ca(2+) channels are not modulated in this way, they are presumed to lack interaction with Gbetagamma. However, here we demonstrate that both Gbetagamma and calmodulin directly bind to cytosolic N and C termini of the alpha(1C) subunit.
View Article and Find Full Text PDFThe first 46 amino acids (aa) of the N terminus of the rabbit heart (RH) L-type cardiac Ca(2+) channel alpha(1C) subunit are crucial for the stimulating action of protein kinase C (PKC) and also hinder channel gating (Shistik, E., Ivanina, T., Blumenstein, Y.
View Article and Find Full Text PDF