It was observed experimentally that after crossing a waveguide filled with a neutral gas a short powerful microwave pulse leaves a periodic glow of plasma along the waveguide, persisting for several tens of nanoseconds. A theoretical model is presented which in combination with numerical simulations proposes a possible explanation for this phenomenon.
View Article and Find Full Text PDFFrequency up-conversion (∼10%) and compression (almost twofold) of a powerful (≤250 MW) microwave pulse in the propagating ionization front produced by the pulse itself in a gas-filled waveguide, is investigated experimentally and analyzed theoretically. Pulse envelope reshaping and group velocity increase manifest themselves in a propagation of the pulse faster than in the empty waveguide. A simple one-dimensional mathematical model allows the adequate interpretation of the experimental results.
View Article and Find Full Text PDFWe examine the momentum and angular momentum (including spin) properties of linear waves, both longitudinal (Langmuir) and transverse (electromagnetic), in an isotropic nonrelativistic collisionless electron plasma. We focus on conserved quantities associated with the translational and rotational invariance of the wave fields with respect to the homogeneous medium; these are sometimes called pseudomomenta. There are two types of the momentum and angular momentum densities: (i) the kinetic ones associated with the energy flux density and the symmetrized (Belinfante) energy-momentum tensor and (ii) the canonical ones associated with the conserved Noether currents and canonical energy-momentum tensor.
View Article and Find Full Text PDFIonization-induced self-channeling of a ≤500 MW, 9.6 GHz, <1 ns microwave beam injected into air at ∼4.5×10^{3} Pa or He at ∼10^{3} Pa is experimentally demonstrated for the first time.
View Article and Find Full Text PDFQuantum weak measurements, wavepacket shifts and optical vortices are universal wave phenomena, which originate from fine interference of multiple plane waves. These effects have attracted considerable attention in both classical and quantum wave systems. Here we report on a phenomenon that brings together all the above topics in a simple one-dimensional scalar wave system.
View Article and Find Full Text PDF