A soluble [NiFe] hydrogenase has been partially purified from the obligate thermophilic sulfate-reducing bacterium Thermodesulfobacterium mobile. A 17% purification yield was obtained after four chromatographic steps and the hydrogenase presents a purity index (A398 nm/A277 nm) equal to 0.21.
View Article and Find Full Text PDFDissimilatory nitrite reduction, carried out by hexaheme proteins, gives ammonia as the final product. Representatives of this enzyme group from 3 bacterial species can also reduce NO to either ammonia or N2O. The redox regulation of the nitrite/nitric oxide activities is discussed in the context of the denitrifying pathway.
View Article and Find Full Text PDFAn original gas chromatographic-mass spectrometric technique is described for studying simultaneous dihydrogen-deuteron exchange and para-ortho H2 conversion catalyzed by different Desulfovibrio hydrogenases. Para and orthohydrogens are separated on an alumina column at the temperature of liquid nitrogen, but if both HD and ortho H2 are present, their retention times are too close to each other for total separation and only one peak is observed with a thermal conductivity detector. In order to resolve the peaks from one another, a fraction of the gas released from the gas chromatograph column is admitted to the ion source of a mass spectrometer, where the gases are separated according to their respective masses.
View Article and Find Full Text PDFThe activities of pure and mixed cultures of Desulfovibrio vulgaris and Methanosarcina barkeri in the exponential growth phase were monitored by measuring changes in dissolved-gas concentration by membrane-inlet mass spectrometry. M. barkeri grown under H2-CO2 or methanol produced limited amounts of methane and practically no hydrogen from either substrate.
View Article and Find Full Text PDFThe nickel tetrahedral sulfur-coordinated core formed upon metal replacement of the native iron in Desulfovibrio sp. rubredoxins is shown to mimic the reactivity pattern of nickel-containing hydrogenases with respect to hydrogen production, deuterium-proton exchange, and inhibition by carbon monoxide.
View Article and Find Full Text PDF