Publications by authors named "Y Baudat"

The HIV-1 regulatory protein Vpr (96 amino acid residues) is incorporated into the virus particle through a mechanism involving its interaction with the C-terminal portion of Gag. Vpr potentiates virus replication by interrupting cell division in the G2 phase and participates in the nuclear transport of proviral DNA. The domain encompassing the 40 C-terminal residues of Vpr was shown to be involved in cell cycle arrest and binding of nucleocapsid protein NCp7, and suggested to promote nuclear provirus transfer.

View Article and Find Full Text PDF

The Vpr protein, encoded by the human immunodeficiency virus type 1 (HIV-1) genome, is one of the nonstructural proteins packaged in large amounts into viral particles. We have previously reported that Vpr associates with the DNA repair enzyme uracil DNA glycosylase (UDG). In this study, we extended these observations by investigating whether UDG is incorporated into virions and whether this incorporation requires the presence of Vpr.

View Article and Find Full Text PDF

Targeting protein or RNA moieties to specific cellular compartments may enhance their desired functions and specificities. Human immunodeficiency virus type I (HIV-1) encodes proteins in addition to Gag, Pol, and Env that are packaged into virus particles. One such retroviral-incorporated protein is Vpr, which is present in all primate lentiviruses.

View Article and Find Full Text PDF

The Vif protein of human immunodeficiency virus type 1 is required for productive replication in peripheral blood lymphocytes. Previous reports suggest that vif-deleted viruses are limited in replication because of a defect in the late steps of the virus life cycle. One of the remaining questions is to determine whether the functional role of Vif involves a specific interaction with virus core proteins.

View Article and Find Full Text PDF