Objectives: Home health care (HHC) serves more than 5 million older adults annually in the United States, aiming to prevent unnecessary hospitalizations and emergency department (ED) visits. Despite efforts, up to 25% of patients in HHC experience these adverse events. The underutilization of clinical notes, aggregated data approaches, and potential demographic biases have limited previous HHC risk prediction models.
View Article and Find Full Text PDFBackground: The healthcare industry increasingly values high-quality and personalized care. Patients with heart failure (HF) receiving home health care (HHC) often experience hospitalizations due to worsening symptoms and comorbidities. Therefore, close symptom monitoring and timely intervention based on risk prediction could help HHC clinicians prevent emergency department (ED) visits and hospitalizations.
View Article and Find Full Text PDFThis study aimed to: (1) validate a natural language processing (NLP) system developed for the home health care setting to identify signs and symptoms of Alzheimer's disease and related dementias (ADRD) documented in clinicians' free-text notes; (2) determine whether signs and symptoms detected via NLP help to identify patients at risk of a new ADRD diagnosis within four years after admission. This study applied NLP to a longitudinal dataset including medical record and Medicare claims data for 56,652 home health care patients and Cox proportional hazard models to the subset of 24,874 patients admitted without an ADRD diagnosis. Selected ADRD signs and symptoms were associated with increased risk of a new ADRD diagnosis during follow-up, including: motor issues; hoarding/cluttering; uncooperative behavior; delusions or hallucinations; mention of ADRD disease names; and caregiver stress.
View Article and Find Full Text PDFThroughout the COVID-19 pandemic New York City home health aides continuously provided care, including to patients actively infected or recovering from COVID-19. Analyzing survey data from 1316 aides, we examined factors associated with perceptions of how well their employer prepared them for COVID-19 and their self-reported availability for work (did they "call out" more than usual). Organizational work environment and COVID-19-related supports were predominant predictors of self-reported perceptions of preparedness.
View Article and Find Full Text PDF