Neutrophils have a pivotal role in safeguarding the host against pathogens and facilitating tissue remodeling. They possess a large array of tools essential for executing these functions. Neutrophils have a critical role in cancer, where they are largely associated with negative clinical outcome and resistance to therapy.
View Article and Find Full Text PDFThe microenvironment plays an important role in promoting tumor cell chemoresistance, but the mechanisms responsible for this effect are not clear. Here, using models of multiple myeloma (MM) and solid cancers, we demonstrate a novel mechanism mediated by neutrophils, a major cell population in the bone marrow (BM), that protects cancer cells from chemotherapeutics. We show that in response to tumor-derived soluble factors, BM neutrophils release their DNA in the form of neutrophil extracellular traps (NETs).
View Article and Find Full Text PDFPatients with metastatic ovarian cancer (OvCa) have a 5-year survival rate of <30% due to the persisting dissemination of chemoresistant cells in the peritoneal fluid and the immunosuppressive microenvironment in the peritoneal cavity. Here, we report that intraperitoneal administration of β-glucan and IFNγ (BI) induced robust tumor regression in clinically relevant models of metastatic OvCa. BI induced tumor regression by controlling fluid tumor burden and activating localized antitumor immunity.
View Article and Find Full Text PDFPatients with metastatic ovarian cancer (OvCa) have a 5-year survival rate of less than 30% due to persisting dissemination of chemoresistant cells in the peritoneal fluid and the immunosuppressive microenvironment in the peritoneal cavity. Here, we report that intraperitoneal administration of β-glucan and IFNγ (BI) induced robust tumor regression in clinically relevant models of metastatic OvCa. BI induced tumor regression by controlling fluid tumor burden and activating localized antitumor immunity.
View Article and Find Full Text PDFUnlabelled: TP53 is the most frequently mutated gene in cancer, yet key target genes for p53-mediated tumor suppression remain unidentified. Here, we characterize a rare, African-specific germline variant of TP53 in the DNA-binding domain Tyr107His (Y107H). Nuclear magnetic resonance and crystal structures reveal that Y107H is structurally similar to wild-type p53.
View Article and Find Full Text PDF