Publications by authors named "Y Avetisyan"

We found experimentally that Cherenkov-type terahertz radiation produced by optical rectification of ultrashort laser pulses in LiNbO can experience strong spectral broadening in the regime of multiphoton laser absorption. The broadening is attributed to the terahertz emission from a surge current of the optically generated carriers. The effect can be used to improve the bandwidth of optical-to-terahertz converters based on optical rectification.

View Article and Find Full Text PDF

The main goal of this work was to modify the previously developed blade-type planar structure using plasmonic gold nanostars in order to stimulate photofield emission and provide efficient laser control of the electron current. Localization and enhancement of the field at the tips of gold nanostars provided a significant increase in the tunneling electron current in the experimental sample (both electrical field and photofield emission). Irradiation at a wavelength in the vicinity of the plasmon resonance (red laser) provided a gain in the photoresponse value of up to 5 times compared to irradiation far from the resonance (green laser).

View Article and Find Full Text PDF

Correction for 'A novel concept of two-component dielectric function for gold nanostars: theoretical modelling and experimental verification' by Nikolai G. Khlebtsov et al., Nanoscale, 2020, 12, 19963-19981, DOI: 10.

View Article and Find Full Text PDF

An important direction in the development of X-ray computed tomography sensors in systems with increased scanning speed and spatial resolution is the creation of an array of miniature current sources. In this paper, we describe a new material based on gold nanostars (GNS) embedded in nanoscale diamond-like carbon (DLC) films (thickness of 20 nm) for constructing a pixel current source with photoinduced electron emission. The effect of localized surface plasmon resonance in GNS on optical properties in the wavelength range from UV to near IR, peculiarities of localization of field and thermal sources, generation of high-energy hot electrons, and mechanisms of their transportation in vacuum are investigated.

View Article and Find Full Text PDF

Rational design of AuNST morphology requires adequate computational models. The bulk dielectric function is not applicable to sharp nanostar spikes. We suggest a two-component dielectric function in which the nanostar core is treated as a bulk material, whereas the size-corrected dielectric function of the spikes is treated by a modified Coronado-Schatz model.

View Article and Find Full Text PDF