Publications by authors named "Y Arikawa"

An experimental investigation of collisionless shock ion acceleration is presented using a multicomponent plasma and a high-intensity picosecond duration laser pulse. Protons are the only accelerated ions when a near-critical-density plasma is driven by a laser with a modest normalized vector potential. The results of particle-in-cell simulations imply that collisionless shock may accelerate protons alone selectively, which can be an important tool for understanding the physics of inaccessible collisionless shocks in space and astrophysical plasma.

View Article and Find Full Text PDF

There is a strong demand for efficient second harmonic generation (SHG) in ultra-intense short-pulse lasers. This paper demonstrates the generation of an unconverted fundamental (1ω)+second harmonics (2ω) mixed laser on the LFEX laser system. The experimental setup utilizes 0.

View Article and Find Full Text PDF

Laser-driven neutron sources (LDNSs) can generate strong short-pulse neutron beams, which are valuable for scientific studies and engineering applications. Neutron resonance transmission analysis (NRTA) is a nondestructive technique used for determining the areal density of each nuclide in a material sample using pulsed thermal and epithermal neutrons. Herein, we report the first successful NRTA performed using an LDNS driven by the Laser for Fast Ignition Experiment at the Institute of Laser Engineering, Osaka University.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses the importance of accurately measuring temperature within materials for controlling dynamic processes, highlighting the limitations of existing techniques like laser-based thermography and phase-contrast imaging.
  • It introduces a novel method utilizing neutron resonance absorption (NRA) to measure the temperature of elements or isotopes inside objects using a single neutron pulse from a high-power laser.
  • The method was successfully demonstrated by measuring the temperature of a tantalum foil as it was heated, showing a correlation with resonance Doppler broadening and utilizing a reference silver foil for accuracy.
View Article and Find Full Text PDF

Solid-state nuclear track detectors (SSNTDs) are often used as ion detectors in laser-driven ion acceleration experiments and are considered to be the most reliable ion diagnostics since they are sensitive only to ions and measure ions one by one. However, ion pit analyses require tremendous time and effort in chemical etching, microscope scanning, and ion pit identification by eyes. From a laser-driven ion acceleration experiment, there are typically millions of microscopic images, and it is practically impossible to analyze all of them by hand.

View Article and Find Full Text PDF