The network representation is becoming increasingly popular for the description of cardiovascular interactions based on the analysis of multiple simultaneously collected variables. However, the traditional methods to assess network links based on pairwise interaction measures cannot reveal high-order effects involving more than two nodes, and are not appropriate to infer the underlying network topology. To address these limitations, here we introduce a framework which combines the assessment of high-order interactions with statistical inference for the characterization of the functional links sustaining physiological networks.
View Article and Find Full Text PDFThe objective was to compare the symptom networks of long-COVID and chronic fatigue syndrome (CFS) in conjunction with other theoretically relevant diagnoses in order to provide insight into the etiology of medically unexplained symptoms (MUS). This was a cross-sectional comparison of questionnaire items between six groups identified by clinical diagnosis. All participants completed a 65-item psychological and somatic symptom questionnaire (GSQ065).
View Article and Find Full Text PDFThe increasing availability of time series data depicting the evolution of physical system properties has prompted the development of methods focused on extracting insights into the system behavior over time, discerning whether it stems from deterministic or stochastic dynamical systems. Surrogate data testing plays a crucial role in this process by facilitating robust statistical assessments. This ensures that the observed results are not mere occurrences by chance, but genuinely reflect the inherent characteristics of the underlying system.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2023