Publications by authors named "Y Achiba"

Raw soot containing single-walled carbon nanotubes (SWNTs), generated with arc-burning apparatus in helium gas atmosphere, was dispersed in 1 wt% sodium cholate (SC)/D2O solution. This solution was then used for successive ultracentrifugation procedure. After ultracentrifugation, UV-VIS and Raman spectra of the supernatant of the solution were investigated.

View Article and Find Full Text PDF

It is known that at low temperature, water inside single-wall carbon nanotubes (water-SWNTs) undergoes a structural transition to form tube-like solid structures. The resulting ice NTs are hollow cylinders with diameters comparable to those of typical gas molecules. Hence, the gas-adsorption properties of ice- and water-SWNTs are of interest.

View Article and Find Full Text PDF

A novel, artificial neural network-based method is now available for obtaining the mean diameter of single wall carbon nanotube (SWCNT) samples from the diameter dispersive features of their Raman G-band. The method is demonstrated here for six different diameter SWCNT samples and 14 different excitation wavelengths. With an adequately large pool of standard nanotube samples, the suggested method is a useful complementary technique for SWCNT diameter analysis as it is capable of rapid diameter evaluation without prior knowledge of the relevant phonon dispersion relations.

View Article and Find Full Text PDF

The electronic transport properties of conventional three-dimensional metals are successfully described by Fermi-liquid theory. But when the dimensionality of such a system is reduced to one, the Fermi-liquid state becomes unstable to Coulomb interactions, and the conduction electrons should instead behave according to Tomonaga-Luttinger-liquid (TLL) theory. Such a state reveals itself through interaction-dependent anomalous exponents in the correlation functions, density of states and momentum distribution of the electrons.

View Article and Find Full Text PDF

Single-walled carbon nanotubes (SWNTs) have strong potential for molecular electronics, owing to their unique structural and electronic properties. However, various outstanding issues still need to be resolved before SWNT-based devices can be made. In particular, large-scale, air-stable and controlled doping is highly desirable.

View Article and Find Full Text PDF