Relapse rates in high-risk neuroblastoma remain exceedingly high. The malignant cells that are responsible for relapse have not been identified, and mechanisms of therapy resistance remain poorly understood. In this study, we used single-nucleus RNA sequencing and bulk whole-genome sequencing to identify and characterize the residual malignant persister cells that survive chemotherapy from a cohort of 20 matched diagnosis and definitive surgery tumor samples from patients treated with high-risk neuroblastoma induction chemotherapy.
View Article and Find Full Text PDFBackground: Intrinsic and extrinsic factors in the tumour microenvironment (TME) contribute to therapeutic resistance. Here we demonstrate that transforming growth factor (TGF)-β1 produced in the TME increased drug resistance of neuroblastoma (NB) cells.
Methods: Human NB cell lines were tested in vitro for their sensitivity to Doxorubicin (DOX) and Etoposide (ETOP) in the presence of tumour-associated macrophages (TAM) and mesenchymal stromal cells/cancer-associated fibroblasts (MSC/CAF).
Exploring the diversity within the tumor microenvironment (TME) can offer crucial insights to steer cancer therapy toward precision medicine. In this issue of Cancer Cell, Wienke et al. undertake a comprehensive single-cell analysis of neuroblastoma, unveiling its immune landscape and identifying NECTIN2-TIGIT as a promising target for immunotherapy.
View Article and Find Full Text PDFThe capture of tumour-derived extracellular vesicles (TEVs) by cells in the tumour microenvironment (TME) contributes to metastasis and notably to the formation of the pre-metastatic niche (PMN). However, due to the challenges associated with modelling release of small EVs in vivo, the kinetics of PMN formation in response to endogenously released TEVs have not been examined. Here, we have studied the endogenous release of TEVs in mice orthotopically implanted with metastatic human melanoma (MEL) and neuroblastoma (NB) cells releasing GFP-tagged EVs (GFTEVs) and their capture by host cells to demonstrate the active contribution of TEVs to metastasis.
View Article and Find Full Text PDFTumor-associated macrophages (TAM) and cancer-associated fibroblasts (CAF) and their precursor mesenchymal stromal cells (MSC) are often detected together in tumors, but how they cooperate is not well understood. Here, we show that TAM and CAF are the most abundant nonmalignant cells and are present together in untreated human neuroblastoma (NB) tumors that are also poorly infiltrated with T and natural killer (NK) cells. We then show that MSC and CAF-MSC harvested from NB tumors protected human monocytes (MN) from spontaneous apoptosis in an interleukin (IL)-6 dependent mechanism.
View Article and Find Full Text PDF