Previous studies have shown that nanoplastics (NPs) are harmful pollutants that threaten aquatic organisms and ecosystems, however, less research has been conducted on the hazards of NPs for aquaculture animals. In this study, Cherax quadricarinatus was used as an experimental model to evaluate the possible effects of three concentrations (25, 250 and 2500 μg/L) of NPs on red crayfish. The toxicological effects of NPs on this species were investigated based on transcriptomics and microbiome.
View Article and Find Full Text PDFIn fish, the maturity of gonads plays an important role in the development and reproduction of the population, and it also dictates the success of captive breeding. Therefore, finding ways to promote gonadal maturation is an important goal in aquaculture. In this study, we injected recombinant dmrt1 and rec8 overexpression plasmids packaged in liposomes into the immature testis of red-spotted grouper (Epinephelus akaara) and measured the expression of Dmrt1 and Rec8 protein in vivo.
View Article and Find Full Text PDFSci Total Environ
February 2022
Polystyrene nanoplastics (PS-NPs) can impair antioxidant, immune, and nervous system functions as well as growth and development in aquatic organisms. At present, however, little is known about the effects and underlying mechanisms of PS-NPs on the digestive system of marine fish. Here, we studied the effects of these plastics on the intestinal health and growth performance of juvenile orange-spotted groupers (Epinephelus coioides).
View Article and Find Full Text PDFPolystyrene nanoplastics (PS-NPs) are known to impair the function of the digestive system, intestinal flora, immune system, and nervous system of marine organisms. We tested whether PS-NPs influence viral infection of orange-spotted grouper (Epinephelus coioides). We found that grouper spleen (GS) cells took up PS-NPs at exposure concentrations of 5, 50, and 500 μg/mL and experienced cytotoxicity at 50 and 500 μg/mL concentrations.
View Article and Find Full Text PDFThe emergence of the CRISPR/Cas system as a technology has transformed our ability to modify nucleic acids, and the CRISPR/Cas13 system has been used to target RNA. CasRx is a small type VI-D effector (Cas13d) with RNA knockdown efficiency that may have an interference effect on RNA viruses. However, the RNA virus-targeting activity of CasRx still needs to be verified in vertebrates.
View Article and Find Full Text PDFViral nervous necrosis (VNN) is an acute and serious fish disease caused by nervous necrosis virus (NNV) which has been reported massive mortality in more than fifty teleost species worldwide. VNN causes damage of necrosis and vacuolation to central nervous system (CNS) cells in fish. It is difficult to identify the specific type of cell targeted by NNV, and to decipher the host immune response because of the functional diversity and highly complex anatomical and cellular composition of the CNS.
View Article and Find Full Text PDFThe main physiological function of 17β-estradiol (E2) in vertebrates is to regulate sexual development and reproduction. In fish, especially hermaphroditic fish, estrogen is often used to aid reproduction, but it also can trigger an inflammatory response. However, the molecular mechanism for this E2-induced inflammatory reaction is not clear.
View Article and Find Full Text PDFMeiosis is a specialized type of cell division critical for gamete production during sexual reproduction in eukaryotes. The meiotic recombination protein Rec8 has been identified as an important factor in germ cell meiotic initiation in vertebrates; however, its equivalent role in teleosts is poorly characterized. In this study, we cloned and sequenced the rec8 gene from orange-spotted grouper (Epinephelus coioides).
View Article and Find Full Text PDFThe increased apoptosis plays an important role in bacterial invasion. In addition, LPS can induce inflammation and apoptosis of leukocytes via the production of reactive oxygen and nitrogen species. In the present study, we investigated the potential protective role of l-arginine (L-Arg) against the apoptosis of fish leukocytes in vitro.
View Article and Find Full Text PDF