Publications by authors named "Xuzhong Gong"

Binders provide a straightforward and efficient strategy to mitigate the significant challenge of volume expansion in silicon anodes for lithium-ion batteries. To improve the cycle life of silicon anodes, a cross-linked binder carboxymethyl cellulose-phytic acid-pyrrole (CMC-DP) is designed and synthesized using carboxymethyl cellulose, phytic acid, and pyrrole. The numerous hydroxyl groups in phytic acid provide abundant binding sites for the formation of hydrogen and ester bonds.

View Article and Find Full Text PDF

The unstable interface between Li metal and ethylene carbonate (EC)-based electrolytes triggers continuous side reactions and uncontrolled dendrite growth, significantly impacting the lifespan of Li metal batteries (LMBs). Herein, a bipolar polymeric protective layer (BPPL) is developed using cyanoethyl (-CHCHC≡N) and hydroxyl (-OH) polar groups, aiming to prevent EC-induced corrosion and facilitating rapid, uniform Li ion transport. Hydrogen-bonding interactions between -OH and EC facilitates the Li desolvation process and effectively traps free EC molecules, thereby eliminating parasitic reactions.

View Article and Find Full Text PDF

A dynamic and stable charge transfer process is the key to exerting lithium storage characteristics of the silicon anode with a large volume change. In this work, the composite with an ultrathin carbon sheet skeleton is prepared by freeze-drying and a copyrolysis process after uniformly mixing citric acid and hydroxylated Si NPs, which is different from traditional conformal carbon coating derived from citric acid. A flexible carbon sheet reduces internal particle (Si-OH@NC) slip and cooperates with interfacial Si-O-C bonding to buffer machinal stress in the electrode during cycling.

View Article and Find Full Text PDF

Tight oil extraction and offshore oil spills generate large amounts of oil-water emulsions, causing serious soil and marine pollution. In such oil-water emulsions, the resin molecules are bound by π-π stacking and bind to interfacial water molecules via hydrogen bonds, which impede the aggregation between water droplets and thereby the separation of the emulsion. In this study, strongly electronegative oxygen atoms (in ethylene oxide, propylene oxide, esters, and hydroxyl groups) were introduced through poly(propylene glycol)-block-polyether and esterification with acrylic acid to attract negative charges in order to form electron-rich regions and enhance interfacial hydrogen bond recombination.

View Article and Find Full Text PDF

The tailings and fluorine-containing sludge were produced during the physical and chemical purification of natural crystalline graphite, containing heavy metals in different occurrence forms. To evaluate the threat of different heavy metals to the environment, this work uses the modified sequential extraction method (BCR) to study the presence of heavy metals in two solid wastes and their dissolution characteristics in different environments. The results show that the pollution risk of heavy metals in graphite tailings to the environment is ranked as Mn > Cr > Ni > Zn, and the pollution risk of Mn in fluorine-containing sludge is higher than that of Cr.

View Article and Find Full Text PDF

Low coulombic efficiency and poor cyclic stability are two common problems for silicon anodes. Therefore, it is of great significance to improve cycling performance and initial coulombic efficiency (ICE) via rational surface engineering on nano-Si anodes. Herein, a new nano-silicon anode is obtained by straightforward constructing a multifunctional polypyrrole protective layer on the surface of silicon nanoparticles, which is further used as the inner boundary of solid electrolyte interface (SEI) film.

View Article and Find Full Text PDF

To improve the inevitable capacity fading issues faced by traditional submicron Si@C electrodes used as anode materials in LIBs, a flexible and conductive connection design is proposed and realized by a solid-state growth approach. In this construction, Si@C is entangled into synthesized carbon nanotube-based network to form a highly connective Si@C/CNTs composite. The interwoven carbon-nanotubes having tight linkages with Si@C contribute to ensure the charge transfer pathway within Si@C particles and accommodate the volume expansion during cycling.

View Article and Find Full Text PDF

CaO-containing carbon pellets (CCCP) was prepared by mixing carbide slag (Ca(OH)) and powdered char to produce CaC, achieving the recycling of carbide slag during CaC production process. The thermal strength of CCCP was the focus of most attention when employing arc furnaces as reactors for CaC production in industry. To improve the thermal strength of CCCP, HPO was used as a binder in this study.

View Article and Find Full Text PDF

Effects of ultrasonic on desulfurization ratio from bauxite water slurry (BWS) electrolysis in NaOH solution were examined under constant current. The results indicated that ultrasonic improved the desulfurization ratio at high temperatures because of the diffusion and transfer of oxygen gas in electrolyte. However, due to the increase in oxygen gas emission, ultrasonic could not improve the desulfurization ratio obviously at low temperatures.

View Article and Find Full Text PDF

We report on the preparation and characterization of CeO(2) nanofibers (CeO(2)-NFs) and nanocubes (CeO(2)-NCs), as well as Sm- and Gd-doped CeO(2) nanocubes (Sm-CeO(2)-NCs and Gd-CeO(2)-NCs), synthesized by a simple hydrothermal process for CO catalytic oxidation. The samples were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Raman spectroscopy, and photoluminescence spectroscopy. Their oxygen-storing capacity (OSC) was examined by means of hydrogen temperature-programmed reduction (H(2)-TPR) and oxygen pulse techniques.

View Article and Find Full Text PDF