A reasonable land use development around subway stations can balance the utilization rates of the subway system during peak and off-peak hours, thereby enhancing its service levels and operational efficiency. Analyzing the temporal distribution patterns of passenger flow and their influencing factors is crucial for determining the optimum ratio of each land use type surrounding metro stations. Thus, this paper employs principal component analysis (PCA) at first to investigate the temporal distribution of metro ridership, and identify their main patterns and factor loadings.
View Article and Find Full Text PDFPerforming ultrasonic nondestructive testing experiments on insulators and then using machine learning algorithms to classify and identify the signals is an important way to achieve an intelligent diagnosis of insulators. However, in most cases, we can obtain only a limited number of data from the experiments, which is insufficient to meet the requirements for training an effective classification and recognition model. In this paper, we start with an existing data augmentation method called DBA (for dynamic time warping barycenter averaging) and propose a new data enhancement method called AWDBA (adaptive weighting DBA).
View Article and Find Full Text PDF