Publications by authors named "Xuyao Zeng"

Unresolved inflammation compromises diabetic wound healing. Recently, we reported that inadequate RNA packaging in murine wound-edge keratinocyte-originated exosomes () leads to persistent inflammation [Zhou, X. 2020, 14(10), 12732-12748].

View Article and Find Full Text PDF

A substantial shortcoming of large-scale datasets is often the inability to easily represent and visualize key features. This problem becomes acute when considering the increasing technical ability to profile large numbers of glycopeptides and glycans in recent studies. Here, we describe a simple, concise graphical representation intended to capture the microheterogeneity associated with glycan modification at specific sites.

View Article and Find Full Text PDF

Bidirectional cell-cell communication involving exosome-borne cargo such as miRNA has emerged as a critical mechanism for wound healing. Unlike other shedding vesicles, exosomes selectively package miRNA by SUMOylation of heterogeneous nuclear ribonucleoproteinA2B1 (hnRNPA2B1). In this work, we elucidate the significance of exosome in keratinocyte-macrophage crosstalk following injury.

View Article and Find Full Text PDF

The masses of particles in a bovine milk extracellular vesicle (EV) preparation enriched for exosomes were directly determined for the first time by charge detection mass spectrometry (CDMS). In CDMS, both the mass-to-charge ratio (/) and are determined simultaneously for individual particles, enabling mass determinations for particles that are far beyond the mass limit (∼1.0 MDa) of conventional mass spectrometry (MS).

View Article and Find Full Text PDF

Development of efficient non-viral gene delivery vector has aroused great attention in the past few decades. In this study, we reported a new gene delivery vector, positively charged fluorescent conjugated polymer nanoparticles (CPNPs), for efficient gene transfection and in-situ intracellular fluorescence imaging. The microscopic and spectroscopic characterizations demonstrated that these CPNPs possess decent fluorescence performance (e.

View Article and Find Full Text PDF

Exploring the diffusion dynamics of a viral capsid proteins (VCP)-functionalized nanocarrier on a living cell membrane could provide much kinetic information for the better understanding of their biological functionality. Gold nanoparticles are an excellent core material of nanocarriers because of the good biocompatibility as well as versatile surface chemistry. However, due to the strong scattering background from subcellular organelles, it is a grand challenge to selectively image an individual nanocarrier on a living cell membrane.

View Article and Find Full Text PDF