Publications by authors named "Xuyang Fu"

Stroke is a serious threat to human health and current clinical therapies remain unsatisfactory. Elevated expression of Na-K-2Cl cotransporter 1 (NKCC1) following stroke can disrupt the blood-brain barrier (BBB) and result in brain edema, indicating that NKCC1 may be a potential therapeutic target for improving stroke outcomes. Polygalasaponin F (PGSF) is a triterpenoid saponin isolated from Polygala japonica Houtt, which has showed neuroprotective effects in previous studies.

View Article and Find Full Text PDF

Coordinated cytoskeleton-mitochondria organization during myogenesis is crucial for muscle development and function. Our understanding of the underlying regulatory mechanisms remains inadequate. Here, we identified a novel muscle-enriched protein, PRR33, which is upregulated during myogenesis and acts as a promyogenic factor.

View Article and Find Full Text PDF

Background: The importance of mitochondria in normal heart function are well recognized and recent studies have implicated changes in mitochondrial metabolism with some forms of heart disease. Previous studies demonstrated that knockdown of the mitochondrial ribosomal protein S5 (MRPS5) by small interfering RNA (siRNA) inhibits mitochondrial translation and thereby causes a mitonuclear protein imbalance. Therefore, we decided to examine the effects of MRPS5 loss and the role of these processes on cardiomyocyte proliferation.

View Article and Find Full Text PDF

Stroke can cause Wallerian degeneration in regions outside of the brain, particularly in the corticospinal tract. To investigate the fate of major glial cells and axons within affected areas of the corticospinal tract following stroke, we induced photochemical infarction of the sensorimotor cortex leading to Wallerian degeneration along the full extent of the corticospinal tract. We first used a routine, sensitive marker of axonal injury, amyloid precursor protein, to examine Wallerian degeneration of the corticospinal tract.

View Article and Find Full Text PDF

The regulation of the informational flow from the mitochondria to the nucleus (mitonuclear communication) is not fully characterized in the heart. We have determined that mitochondrial ribosomal protein S5 (MRPS5/uS5m) can regulate cardiac function and key pathways to coordinate this process during cardiac stress. We demonstrate that loss of Mrps5 in the developing heart leads to cardiac defects and embryonic lethality while postnatal loss induces cardiac hypertrophy and heart failure.

View Article and Find Full Text PDF

Succinate dehydrogenase, which is known as mitochondrial complex II, has proven to be a fascinating machinery, attracting renewed and increased interest in its involvement in human diseases. Herein, we find that succinate dehydrogenase assembly factor 4 (SDHAF4) is downregulated in cardiac muscle in response to pathological stresses and in diseased hearts from human patients. Cardiac loss of Sdhaf4 suppresses complex II assembly and results in subunit degradation and complex II deficiency in fetal mice.

View Article and Find Full Text PDF

Metabolic modulation is a promising therapeutic approach to prevent adverse remodeling of the ischemic heart. Because little is known about the involvement of long non-coding RNAs (lncRNAs) in regulating cardiac metabolism, we used unbiased transcriptome profiling in a mouse model of myocardial infarction (MI). We identified a novel cardiomyocyte-enriched lncRNA, called LncHrt, which regulates metabolism and the pathophysiological processes that lead to heart failure.

View Article and Find Full Text PDF

Cardiovascular diseases are associated with high incidence and mortality, contribute to disability and place a heavy economic burden on countries worldwide. Stimulating endogenous cardiomyocyte proliferation and regeneration has been considering as a key to repair the injured heart caused by ischaemia. Emerging evidence has proved that non-coding RNAs participate in cardiac proliferation and regeneration.

View Article and Find Full Text PDF
Article Synopsis
  • Cardiac fibrosis is a serious condition that develops in most heart diseases, leading to decreased heart function and potential heart failure; the study focuses on understanding the role of long noncoding RNAs (lncRNAs) in this process.
  • Researchers identified a specific lncRNA called AK048087, which is significantly upregulated after myocardial infarction (heart attack) and plays a crucial role in cardiac fibroblast activation and fibrosis regulation.
  • The findings suggest that targeting lncRNA AK048087 could be a promising therapeutic approach to prevent cardiac fibrosis and improve heart function in patients with heart disease.
View Article and Find Full Text PDF

Eukaryotic cells may divide via the critical cellular process of cell division/mitosis, resulting in two daughter cells with the same genetic information. A large number of dedicated proteins are involved in this process and spatiotemporally assembled into three distinct super-complex structures/organelles, including the centrosome/spindle pole body, kinetochore/centromere and cleavage furrow/midbody/bud neck, so as to precisely modulate the cell division/mitosis events of chromosome alignment, chromosome segregation and cytokinesis in an orderly fashion. In recent years, many efforts have been made to identify the protein components and architecture of these subcellular organelles, aiming to uncover the organelle assembly pathways, determine the molecular mechanisms underlying the organelle functions, and thereby provide new therapeutic strategies for a variety of diseases.

View Article and Find Full Text PDF