Electron transport through aromatic species (especially tryptophan and tyrosine) plays a central role in water splitting, redox signaling, oxidative damage protection, and bioenergetics. The cytochrome peroxidase (CcP)-cytochrome (Cc) complex (CcP:Cc) is used widely to study interprotein electron transfer (ET) mechanisms. Tryptophan 191 (Trp191) of CcP supports hole hopping charge recombination in the CcP:Cc complex.
View Article and Find Full Text PDFThe extent of electronic wave function delocalization for the charge carrier (electron or hole) in double helical DNA plays an important role in determining the DNA charge transfer mechanism and kinetics. The size of the charge carrier's wave function delocalization is regulated by the solvation induced localization and the quantum delocalization among the π stacked base pairs at any instant of time. Using a newly developed localized orbital scaling correction (LOSC) density functional theory method, we accurately characterized the quantum delocalization of the hole wave function in double helical B-DNA.
View Article and Find Full Text PDFThe electrically conductive pili of Geobacter sulfurreducens are of both fundamental and practical interest. They facilitate extracellular and interspecies electron transfer (ET) and also provide an electrical interface between living and nonliving systems. We examine the possible mechanisms of G.
View Article and Find Full Text PDFThe first and facile total synthesis of thaxtomin A and its three stereoisomers has been achieved. The synthetic approach involves intramolecular nucleophilic cyclization of an amide toward a ketoamide group to produce a C-hydroxydiketopiperazine scaffold. The most amazing discovery was that each of the four stereoisomers of TA exhibits different phytotoxic, fungicidal, and antiviral activities.
View Article and Find Full Text PDF