Publications by authors named "Xuxuan Yang"

Mimicking anisotropic features is crucial for developing artificial load-bearing soft tissues such as menisci). Here, a high-density hydrogen bond locking (HDHBL) strategy, involving preloading a poly(N-acryloylsemicarbazide) (PNASC) hydrogel with an aqueous solution containing a hydrogen bond breaking agent, followed by water exchange, to fabricate anisotropic high-strength hydrogels are proposed. During this process, multiple high-density hydrogen bonds of the PNASC network are re-established, firmly freezing oriented molecular chains, and creating a network with an anisotropic microstructure.

View Article and Find Full Text PDF

Two-dimensional (2D) InSe is a good candidate for high-performance photodetectors due to its good light absorption and electrical transport properties. However, 2D InSe photodetectors usually endure a large driving voltage, and 2D InSe-based heterojunction photodetectors require complex fabrication processes. Here, we demonstrate high-performance self-powered InSe-based photoelectrochemical (PEC) photodetectors using electrochemical intercalated ultrathin InSe nanosheets.

View Article and Find Full Text PDF

Two-dimensional (2D) bismuth oxychalcogenide (BiOX, X refers to S, Se, and Te) is one type of rising semiconductor with excellent electrical transport properties, high photoresponse, and good air stability. However, the research on 2D BiOS is limited. In this work, ultrathin BiOS nanosheets are synthesized by a facile and eco-friendly chemical synthesis method at room temperature.

View Article and Find Full Text PDF

Topical use of antimicrobial agents to treat wounds to inhibit bacterial invasion and facilitate wound healing is an effective strategy. In this work, an antibacterial xerogel film for potential applications in wound dressings was developed. First, a natural antibacterial agent, quercetin (Qu), was made into water-soluble quercetin-borate (QuB) nanoparticles by merging a solvent exchange method with the borate esterification reaction.

View Article and Find Full Text PDF

It is significant to develop a protective film (coating) for touch screen panels with combined absorbing UV and antibacterial performances. This work developed a smart strategy to fabricate multifunctional protective films for touch screen panels. Polymeric microgels of polyquaternium-10 (PQ) and sodium alginate (SA) were firstly fabricated based on electrostatic interactions.

View Article and Find Full Text PDF