Publications by authors named "Xutao Zhang"

Two-dimensional (2D) semiconductors, owing to their strong excitonic emission, are emerging as efficient gain media for constructing the ultimate nanolaser. The further integration of 2D semiconductors with plasmonic devices holds promise for realizing the thinnest laser. However, the implementation of 2D semiconductor plasmonic lasing is severely hindered by the limited cavity feedback and low gain resulting from insufficient plasmon-exciton interactions.

View Article and Find Full Text PDF

Aerobic glycolysis is critical for tumor growth and metastasis. Previously, we have found that the overexpression of the inhibitor of growth 5 (ING5) inhibits lung cancer aggressiveness and epithelial-mesenchymal transition (EMT). However, whether ING5 regulates lung cancer metabolism reprogramming remains unknown.

View Article and Find Full Text PDF

Pathological cardiac hypertrophy is the primary cause of heart failure, yet its underlying mechanisms remain incompletely understood. Transmembrane protein 100 (TMEM100) plays a role in various disorders, such as nervous system disease, pain and tumorigenesis, but its function in pathological cardiac hypertrophy is still unknown. In this study, we observed that TMEM100 is upregulated in cardiac hypertrophy.

View Article and Find Full Text PDF

Highly integrated optoelectronic and photonic systems underpin the development of next-generation advanced optical and quantum communication technologies, which require compact, multiwavelength laser sources at the telecom band. Here, we report on-substrate vertical emitting lasing from ordered InGaAs/InP multi-quantum well core-shell nanowire array epitaxially grown on InP substrate by selective area epitaxy. To reduce optical loss and tailor the cavity mode, a new nanowire facet engineering approach has been developed to achieve controlled quantum well nanowire dimensions with uniform morphology and high crystal quality.

View Article and Find Full Text PDF

Carbon/CN heteronanotubes (CCNNTs) have garnered significant interest for their distinctive performance and versatility across various applications. However, the understanding of interfacial heat transport within these heterostructures remains limited. This study aims to enrich the field by constructing models of CCNNTs through the bonding of CNTs and CNNTs, and employs nonequilibrium molecular dynamics (NEMD) simulations to predict their heat flux and thermal rectification (TR) effects.

View Article and Find Full Text PDF

In order to investigate the tensile properties of basalt fibre reinforced recycled aggregate concrete (BFRAC), the axial tensile tests were carried out on BFRAC specimens using the concrete axial tensile testing device. The effects of basalt fibre (BF) content and recycled aggregate replacement rate on the tensile properties of BFRAC were quantitatively investigated, and the tensile damage mechanism of BFRAC was analysed. The following conclusions were drawn: The volume fraction of BF had the most prominent effect on the axial tensile properties of BFRAC.

View Article and Find Full Text PDF

Cellulose nanofiber (CNF) has been widely used as a flexible and lightweight polymer matrix for electromagnetic shielding and thermally conductive composite films because of its excellent mechanical strength, environmental performance, and low cost. However, the lack of flame retardancy seriously hinders its further application. Herein, renewable and biomass-sourced l-arginine (AR) was used to surface-modify ammonium polyphosphate (APP) and an environmentally friendly biobased flame retardant was synthesized by the coordination of zinc sulfate heptahydrate (ZnSO·7HO), which was named AAZ.

View Article and Find Full Text PDF

Aiming at the difficult problems of the large deformation in weakly cemented soft rock roadways, the reasons of large deformation are analyzed for roadways in Hongqingliang coal mine. On this basis, the principle of step by step combined support technology based on allowable deformation + limiting shape for weakly cemented soft rock roadway is proposed, and the optimal support parameters of step by step combined technology are determined by FLAC3D. Step by step combined support technology includes the primary support of anchor bolt + anchor cable + initial shotcrete and the secondary support of U-shaped steel shed + filling flexible material behind shed + control of key parts.

View Article and Find Full Text PDF

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS): Life-threatening medical conditions characterized by high morbidity and mortality rates, where the inflammatory process plays a crucial role in lung tissue damage, especially in models induced by lipopolysaccharide (LPS). Heat shock protein A12B (HSPA12B) has strong anti-infammatory properties However, it is unknown whether increased HSPA12B is protective against LPS-induced ALI. And Dexmedetomidine (DEX) is a potent α-adrenergic receptor (α-AR) agonist that has been shown to protect against sepsis-induced lung injury, however, the underlying mechanisms of this protection are not fully understood.

View Article and Find Full Text PDF

The low liquid limit silty soil in the North China plain area is generally unsuitable for direct use as roadbed and slope soil. In order to improve the performance of low liquid limit silty soil, xanthan gum was used as an improver. Through a series of tests, the improvement effect of xanthan gum on low liquid limit silty soil was studied.

View Article and Find Full Text PDF

The surrounding rock pressure of vertical shafts is one of the basic parameters of shaft lining design. Investigating its calculation methods and applicable scopes has great engineering significance. The paper classifies and compares the calculation methods, discusses the application scopes of various calculation methods, and proposes that the axisymmetric layered method is highly consistent with the field monitoring data for the calculation of surrounding rock pressure of vertical shafts in bedrock sections on the basis of practical engineering examples.

View Article and Find Full Text PDF

In this paper, both fundamental SSP modes on a roofed metallic grating and its effective excitation of the bounded SSP mode by an injected electron beam on the structure are numerically examined and investigated in the THz regime. Apart from the bounded SSP mode on the metallic grating with open space, the introduced roofed metallic grating can generate a closed waveguide mode that occupies the dispersion region outside the light line. The closed waveguide mode shifts gradually to a higher frequency band with a decreased gap size, while the bounded SSP mode line becomes lower.

View Article and Find Full Text PDF

Resveratrol has profound benefits against diabetes. However, whether its methylated derivative 3,4',5-trimethoxy--stilbene (3,4',5-TMS) also plays a protective role in glucose metabolism is not characterized. We aimed to study the anti-diabetic effects of 3,4',5-TMS and .

View Article and Find Full Text PDF

Conducting research on the fatigue performance of concrete materials is of great significance for the anti fatigue design of concrete structures. Currently, indirect tensile or compressive strength tests are commonly used to study the fatigue performance of basalt fiber reinforced concrete, but there is little research on its fatigue performance under direct tensile conditions. Using a fatigue testing machine and a self-developed concrete axial tensile device, direct tensile fatigue tests of basalt fiber reinforced concrete were conducted under different fiber content and stress levels.

View Article and Find Full Text PDF

Background: Diabetes belongs to the most prevalent metabolic diseases worldwide, which is featured with insulin resistance, closely associated with obesity and urgently needs to be treated. Baicalin, belonging to natural flavonoids, has been reported to inhibit oxidative stress or inflammatoin.

Purpose: This study investigated the properties of baicalin on modulating abnormal glucolipid metabolism, as well as the underlying in-vitro and in-vivo mechanisms.

View Article and Find Full Text PDF

L. (purslane) is a food and a traditional drug worldwide. It exhibits anti-inflammatory, anti-oxidative, anti-tumor, and anti-diabetic bioactivities; but its activity on diabetic-associated endothelial dysfunction is unknown.

View Article and Find Full Text PDF

Virtually all forms of cardiac disease exhibit cardiac fibrosis as a common trait, which ultimately leads to adverse ventricular remodeling and heart failure. To improve the prognosis of heart disease, it is crucial to halt the progression of cardiac fibrosis. Protein function is intricately linked with protein glycosylation, a vital post-translational modification.

View Article and Find Full Text PDF

Aerosols as an external factor have an important role in the amplification of Arctic warming, yet the geography of this harsh region has led to a paucity of observations, which has limited our understanding of the Arctic climate. We synthesized the latest decade (2010-2021) of data on the microphysical-optical-radiative properties of aerosols and their multi-component evolution during the Arctic summer, taking into consideration the important role of wildfire burning. Our results are based on continuous observations from eight AERONET sites across the Arctic region, together with a meteorological reanalysis dataset and satellite observations of fires, and utilize a back-trajectory model to track the source of the aerosols.

View Article and Find Full Text PDF

In order to study the axial tensile properties of polypropylene fiber reinforced concrete, an axial tensile test device for concrete is developed in this paper. The device is composed of three parts: rigid frame, spherical hinge and puller, and specimen fabrication part. The test device can accurately measure the tensile strength and peak tensile strain of concrete, and perfectly solves the eccentricity problem of concrete specimens under tension.

View Article and Find Full Text PDF

Background And Aims: Hyperlipidemia has been extensively recognized as a high-risk factor for NASH; however, clinical susceptibility to NASH is highly heterogeneous. The key controller(s) of NASH susceptibility in patients with hyperlipidemia has not yet been elucidated. Here, we aimed to reveal the key regulators of NASH in patients with hyperlipidemia and to explore its role and underlying mechanisms.

View Article and Find Full Text PDF

Mechanical pressure overload and other stimuli often contribute to heart hypertrophy, a significant factor in the induction of heart failure. The UDP-glucose ceramide glycosyltransferase (UGCG) enzyme plays a crucial role in the metabolism of sphingolipids through the production of glucosylceramide. However, its role in heart hypertrophy remains unknown.

View Article and Find Full Text PDF

Atherosclerosis (AS)-associated cardiovascular diseases are predominant causes of morbidity and mortality worldwide. Melatonin, a circadian hormone with anti-inflammatory activity, may be a novel therapeutic intervention for AS. However, the exact mechanism is unclear.

View Article and Find Full Text PDF

ING5 belongs to the inhibitor of growth (ING) candidate tumor suppressor family, which is involved in multiple cellular functions, such as cell cycle regulation, apoptosis, and chromatin remodelling. Previously, we reported that ING5 overexpression inhibits EMT by regulating EMT-related molecules, including Snail1, at the mRNA and protein levels. However, the mechanisms remain unclear.

View Article and Find Full Text PDF

Due to the peculiar structured light field with spatially variant polarizations on the same wavefront, vector beams (VBs) have sparked research enthusiasm in developing advanced super-resolution imaging and optical communications techniques. A compact VB nanolaser is intriguing for VB applications in miniaturized photonic integrated circuits. However, determined by the diffraction limit of light, it is a challenge to realize a VB nanolaser in the subwavelength scale because the VB lasing modes should have laterally structured distributions.

View Article and Find Full Text PDF

A terahertz flexible metamaterial quarter-wave plate (QWP) is designed and fabricated using polyimide as the substrate in this paper, with a 3 dB axial ratio bandwidth of 0.51 THz and high polarization conversion efficiency and transmittance. The effect of the incidence angle on the polarization conversion performance of the QWP is discussed by measuring the transmissions at multiple incidence angles.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: