Publications by authors named "Xusheng Wang"

The carboxymethyl chitosan (CMCS)-based porous beads are still criticized for their limited number of binding sites, which impairs their efficacy in removing aqueous pollutants. To overcome this challenge, this work introduces the production of covalently crosslinked CMCS-based beads containing SiO and poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS). The porous composite beads not only possess remarkable stability under acidic conditions, but also have abundant active binding sites for adsorption.

View Article and Find Full Text PDF

Optical imaging in the second near-infrared window (NIR-II, 1000-1700 nm) holds great promise for biomedical detection due to reduced tissue scattering and autofluorescence. However, the rational design of NIR-II probes with superior excitation wavelengths to balance the effects of tissue scattering and water absorption remains a great challenge. To address this issue, here we developed a series of Ho-sensitized lanthanide (Ln) nanocrystals (NaYF: Ho, Ln@NaYF) excited at 1143 nm, featuring tunable emissions ranging from 1000 to 2200 nm for bioimaging.

View Article and Find Full Text PDF

Reconfigurable field-effect transistors (RFETs) offer notable benefits on electronic and optoelectronic logic circuits, surpassing the integration, flexibility, and cost-efficiency of conventional complementary metal-oxide semiconductor transistors. The low on/off current ratio of these transistors remains a considerable impediment in the practical application of RFETs. To overcome these limitations, a van der Waals heterojunction (vdWH) transistor composed of WSe/TaNiSe has been proposed.

View Article and Find Full Text PDF

The identification of peptides is a cornerstone of mass spectrometry-based proteomics. Spectral library-based algorithms are well-established methods to enhance the identification efficiency of peptides during database searches in proteomics. However, these algorithms are not specifically tailored for tandem mass tag (TMT)-based proteomics due to the lack of high-quality TMT spectral libraries.

View Article and Find Full Text PDF

Advances in high-throughput omics technologies have enabled system-wide characterization of biological samples across multiple molecular levels, such as the genome, transcriptome, and proteome. However, as sample sizes rapidly increase in large-scale multi-omics studies, sample mix-ups have become a prevalent issue, compromising data integrity and leading to erroneous conclusions. The interconnected nature of multi-omics data presents an opportunity to identify and correct these errors.

View Article and Find Full Text PDF

The prevalence and mortality rates of colorectal cancer (CRC) are increasing worldwide. Radiation resistance hinders radiotherapy, a standard treatment for advanced CRC, leading to local recurrence and metastasis. Elucidating the molecular mechanisms underlying radioresistance in CRC is critical to enhance therapeutic efficacy and patient outcomes.

View Article and Find Full Text PDF

There is currently a lack of pathological research on the hair loss caused by stress, and there is no effective treatment available. It has been previously reported that stress can cause sympathetic nerve activation and release of norepinephrine, which binds to beta-2 adrenergic receptors and causes a series of chemical reactions. Propranolol, as a beta-2 adrenergic receptors blocker, competitively antagonizes the effects of norepinephrine.

View Article and Find Full Text PDF

The unique properties of confined water molecules within polymer networks have garnered extensive research interest in energy storage, catalysis, and sensing. Confined water molecules exhibit higher thermodynamic stability compared to free water, which reduces decomposition and evaporation of water in hydrogel electrolyte system. Herein, a facile strategy is developed to limit active water molecules in a hydrogel network via hydrogen bonding within a topological network.

View Article and Find Full Text PDF
Article Synopsis
  • - The study analyzes age-dependent changes in the brain proteins and their modifications in several mouse models of Alzheimer's disease (AD), focusing on how these models represent human AD complexities.
  • - Results showed that commonly used mouse models only replicate about 30% of the protein changes seen in humans, but adding more genetic factors can increase this to 42%.
  • - The research highlights inconsistencies between protein and gene expression in the 5xFAD model, indicating that amyloid plaque environments affect protein turnover, which could lead to new targets for AD treatment.
View Article and Find Full Text PDF

Industrialization has significantly polluted the Yangtze River Basin, posing phenolic compounds and heavy metals that threaten ecological and human health. This study comprehensively evaluated the impact of these pollutants on the Yangtze River's aquatic ecosystems across multiple trophic levels. Sampling from 84 sites during both dry and wet seasons, water chemistry and biological data were analyzed by advanced molecular and statistical techniques.

View Article and Find Full Text PDF

Anti-Stokes luminescence (ASL) based on lanthanide nanocrystals holds immense promise for in vivo optical imaging and bio-detection, which benefits from filtered autofluorescence. However, the current longest emission and excitation wavelengths of lanthanide ASL system were shorter than 1200 nm and 1532 nm, respectively, which limited tissue penetration depth and caused low signal-to-noise ratio (SNR) of in vivo imaging due to tissue scattering and water absorption. In this work, we extended the excitation wavelength to 1710 nm with the second near-infrared (NIR-II, 1000-1700 nm) emission up to 1650 nm through a novel ASL nanocrystal LiYF : 10 %Tm@LiYF : 70 %Er@LiYF.

View Article and Find Full Text PDF

Hydrogen-bonded organic frameworks (HOFs) are emerging as multifunctional materials with exceptional biocompatibility, abundant active sites, and tunable porosity, which are highly beneficial for advanced wound care. However, a significant challenge involves transforming pristine HOFs powders into lightweight, ultrathin, freestanding membranes compatible with soft biological systems. Herein, the study successfully develops shape-adaptive HOF-based matrix membranes (HMMs) using a polymer-assisted liquid-air interface technique.

View Article and Find Full Text PDF

Transient receptor potential canonical (TRPC) channels are widely expressed in the brain; however, their precise roles in neurodegeneration, such as Alzheimer's disease (AD) remain elusive. Bioinformatic analysis of the published single-cell RNA-seq data collected from AD patient cohorts indicates that the gene is uniquely upregulated in excitatory neurons. TRPC3 expression is also upregulated in post-mortem AD brains, and in both acute and chronic mouse models of AD.

View Article and Find Full Text PDF

Flexible electrochemical sensors can adhere to any bendable surface with conformal contact, enabling continuous data monitoring without compromising the surface's dynamics. Among various materials that have been explored for flexible electronics, metal-organic frameworks (MOFs) exhibit dynamic responses to physical and chemical signals, offering new opportunities for flexible electrochemical sensing technologies. This review aims to explore the role of electrocatalysis in MOF films specifically designed for flexible electrochemical sensing applications, with a focus on their design, fabrication techniques, and applications.

View Article and Find Full Text PDF

Ubiquitin controls many cellular processes via its posttranslational conjugation onto substrates. Its use is highly variable due to its ability to form poly-ubiquitin chains with various topologies. Among them, linear chains have emerged as important regulators of immune responses and protein degradation.

View Article and Find Full Text PDF

Aquatic ecosystems are primary repositories for microplastics (MPs), which pose significant risks to aquatic organisms. This study addresses the gap in understanding the effects of MPs pollution by analyzing 3,757 biological endpoints from 85 laboratory studies. Overall, our results indicate that MPs exposure significantly inhibits fish growth, survival, and reproductive ability, and increases oxidative damage, specifically, MPs exposure leads to elevated levels of malondialdehyde.

View Article and Find Full Text PDF

53BP1 is a well-established DNA damage repair factor that has recently emerged to critically regulate gene expression for tumor suppression and neural development. However, its precise function and regulatory mechanisms remain unclear. Here, we showed that phosphorylation of 53BP1 at serine 25 by ATM is required for neural progenitor cell proliferation and neuronal differentiation in cortical brain organoids.

View Article and Find Full Text PDF

Wound healing is a dynamic process involving the timely transition of organized phases. However, infected wounds often experience prolonged inflammation due to microbial overload. Thus, addressing the viable treatment needs across different healing stages is a critical challenge in wound management.

View Article and Find Full Text PDF

Naive CD4 T cells in specific pathogen-free (SPF) mice are characterized by transcriptional heterogeneity and subpopulations distinguished by the expression of quiescence, the extracellular matrix (ECM) and cytoskeleton, type I interferon (IFN-I) response, memory-like, and T cell receptor (TCR) activation genes. We demonstrate that this constitutive heterogeneity, including the presence of the IFN-I response cluster, is commensal independent insofar as being identical in germ-free and SPF mice. By contrast, Nippostrongylus brasiliensis infection altered this constitutive heterogeneity.

View Article and Find Full Text PDF

Despite significant advances over recent years, the treatment of T cell acute lymphoblastic leukemia (T-ALL) remains challenging. We have recently shown that a subset of T-ALL cases exhibited constitutive activation of the lymphocyte-specific protein tyrosine kinase (LCK) and were consequently responsive to treatments with LCK inhibitors and degraders such as dasatinib and dasatinib-based PROTACs. Here we report the design, synthesis and evaluation of SJ45566, a potent and orally bioavailable LCK PROTAC.

View Article and Find Full Text PDF

Developing bifunctional electrocatalysts based on non-precious metals for overall water splitting, while maintaining high catalytic activity and stability under high current densities, remains challenging. Herein, we successfully constructred trace iron-doped nickel-cobalt selenide with abundant CoSe (210)-NiSe (202) heterointerfaces via a simple one-step selenization reaction. The synthesized Fe-NiCoSe/NCFF (NCFF stands for nickel-cobalt-iron foam) exhibits outstanding hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) activity with low overpotentials of 328 mV for HER and 345 mV for OER at a high current density of 1000 mA cm, while maintaining stability for over 20 h.

View Article and Find Full Text PDF

Background: Kaposiform hemangioendothelioma (KHE) is a rare vascular tumor with a high risk of mortality. Few studies with large samples of KHE have been reported. KHE may develop into the Kasabach-Merritt phenomenon (KMP), which is characterized by thrombocytopenia and consumptive coagulopathy.

View Article and Find Full Text PDF

Proteomic profiling of Alzheimer's disease (AD) brains has identified numerous understudied proteins, including midkine (MDK), that are highly upregulated and correlated with Aβ since the early disease stage, but their roles in disease progression are not fully understood. Here we present that MDK attenuates Aβ assembly and influences amyloid formation in the 5xFAD amyloidosis mouse model. MDK protein mitigates fibril formation of both Aβ40 and Aβ42 peptides in Thioflavin T fluorescence assay, circular dichroism, negative stain electron microscopy, and NMR analysis.

View Article and Find Full Text PDF

Artificial moiré superlattices created by stacking 2D crystals have emerged as a powerful platform with unprecedented material-engineering capabilities. While moiré superlattices are reported to host a number of novel quantum states, their potential for spintronic applications remains largely unexplored. Here, the effective manipulation of spin-orbit torque (SOT) is demonstrated using moiré superlattices in ferromagnetic devices comprised of twisted WS/WS homobilayer (t-WS) and CoFe/Pt thin films by altering twisting angle (θ) and gate voltage.

View Article and Find Full Text PDF

Psoriasis is a chronic skin inflammation influenced by dysregulated skin microbiota, with the role of microbiota in psoriasis gaining increasing prominence. Bacterial extracellular vesicles (bEVs) serve as crucial regulators in the interaction between hosts and microbiota. However, the mechanism underlying the therapeutic potential of bEVs from commensal bacteria in psoriasis remains unclear.

View Article and Find Full Text PDF