Background And Objective: The pathological type of non-small cell lung cancer is considered to be an important factor affecting the treatment and prognosis. The purpose of this study was to investigate the diagnostic value of spectral parameters of dual-layer spectral detector computed tomography (DLCT) in determining efficacy to distinguish adenocarcinoma (AC) and squamous cell carcinoma (SC), and their combined diagnostic efficacy was also analyzed.
Methods: This is a single-center prospective study, and we collected 70 patients with lung SC and 127 patients with lung AC confirmed by histopathological examination.
Background: It is difficult to distinguish the pathological grade of lung adenocarcinoma (LUAD) with traditional computed tomography (CT). The aim of this study was to assess tumor differentiation by dual-layer spectral detector CT combined with morphological parameters.
Methods: In this prospective study, a total of 67 patients with pathologically diagnosed LUAD were enrolled: 39 patients in the well- and moderately-differentiated group (14 and 25 patients, respectively) and 28 patients in the poorly-differentiated group.
A novel method involving the effect of thermal contact resistance (TCR) was proposed using a plane heat source smaller than the measured samples for improving measurement accuracy of the simultaneous determination of in-plane and cross-plane thermal conductivities and the volumetric heat capacity of anisotropic materials. The heat transfer during the measurement process was mathematically modeled in a 3D Cartesian coordinate system. The temperature distribution inside the sample was analytically derived by applying Laplace transform and the variables separation method.
View Article and Find Full Text PDF