Aqueous Zn battery is promising for grid-level energy storage due to its high safety and low cost, but dendrite growth and side reactions at the Zn metal anode hinder its development. Designing Zn with (002) orientation improves the stability of the Zn anode, yet grain boundaries remain susceptible to corrosion and dendrite growth. Addressing these intergranular issues is crucial for enhancing the electrochemical performance of (002)-textured Zn.
View Article and Find Full Text PDFPorous copper (Cu) current collectors show promise in stabilizing Li metal anodes (LMAs). However, insufficient lithiophilicity of pure Cu and limited porosity in three-dimensional (3D) porous Cu structures led to an inefficient Li-Cu composite preparation and poor electrochemical performance of Li-Cu composite anodes. Herein, we propose a porous Cu-CuZn (DG-CCZ) host for Li composite anodes to tackle these issues.
View Article and Find Full Text PDFTunnel-type vanadium oxides are promising cathodes for aqueous zinc ion batteries. However, unlike layer-type cathodes with adjustable layer distances, enhancing ion-transport kinetics in tunnels characterized by fixed sizes poses a considerable challenge. This study highlights that the macroscopic arrangement of the electrode crucially determines tunnel orientation, thereby influencing ion transport.
View Article and Find Full Text PDFRechargeable aqueous zinc batteries are promising but hindered by unfavorable dendrite growth and side reactions on zinc anodes. In this study, we demonstrate a fast melting-solidification approach for effectively converting commercial Zn foils into single (002)-textured Zn featuring millimeter-sized grains. The melting process eliminates initial texture, residual stress, and grain size variations in diverse commercial Zn foils, guaranteeing the uniformity of commercial Zn foils into single (002)-textured Zn.
View Article and Find Full Text PDF