Circular RNAs (circRNAs) are a distinct class of non-coding RNAs that play regulatory roles in the initiation and progression of tumors. With advancements in transcriptome sequencing technology, numerous circRNAs that play significant roles in tumor-related genes have been identified. In this study, we used transcriptome sequencing to analyze the expression levels of circRNAs in normal adjacent tissues, primary colorectal cancer (CRC) tissues, and CRC tissues with liver metastasis.
View Article and Find Full Text PDFLeaf color mutants are common in higher plants that can be used as markers in crop breeding and are important tools in understanding regulatory mechanisms of chlorophyll biosynthesis and chloroplast development. Genetic analysis was performed by evaluating F, F and BC populations derived from two parental lines (Charleston gray with green leaf color and Houlv with delayed green leaf color), suggesting that a single recessive gene controls the delayed green leaf color. In this study, the delayed green mutant showed a conditional pale green leaf color at the early leaf development but turned to green as the leaf development progressed.
View Article and Find Full Text PDFSeed production for polyploid watermelons is costly, complex, and labor-intensive. Tetraploid and triploid plants produce fewer seeds/fruit, and triploid embryos have a harder seed coat and are generally weaker than diploid seeds. In this study, we propagated tetraploid and triploid watermelons by grafting cuttings onto gourd rootstock (C.
View Article and Find Full Text PDFBackground: Flooding is a major stress factor impacting watermelon growth and production globally. Metabolites play a crucial role in coping with both biotic and abiotic stresses.
Methods: In this study, diploid (2X) and triploid (3X) watermelons were investigated to determine their flooding tolerance mechanisms by examining physiological, biochemical, and metabolic changes at different stages.
A range of volatile organic compounds played an important role in the formation of watermelon fruit aroma, while due to the low content and difficulty in detection, it is often neglected in watermelon breeding programs, resulting in a decline in fruit flavor. VOCs in the flesh of 194 watermelon accessions and seven cultivars at four developmental stages were determined by SPME-GC-MS. Ten metabolites with significant differences in the natural population and positive accumulation during fruit development are considered to be the key metabolite related to watermelon fruit aroma.
View Article and Find Full Text PDFRind thickness and fruit weight are agronomic traits closely related to quality and yield, which have attracted much attention from consumers and breeders. However, the genetic mechanism of these two traits is still not well understood in natural populations. In this study, rind thickness and single fruit weight in 151 watermelon accessions were determined in 2019 and 2020, and genome-wide association analysis was performed by integrating phenotypic and genotype data.
View Article and Find Full Text PDFAlthough crop domestication has greatly aided human civilization, the sequential domestication and regulation of most quality traits remain poorly understood. Here, we report the stepwise selection and regulation of major fruit quality traits that occurred during watermelon evolution. The levels of fruit cucurbitacins and flavonoids were negatively selected during speciation, whereas sugar and carotenoid contents were positively selected during domestication.
View Article and Find Full Text PDFWatermelon () is a popular crop worldwide. Compared to diploid seeded watermelon, triploid seedless watermelon cultivars are in great demand. Grafting in triploid and tetraploid watermelon produces few seedlings.
View Article and Find Full Text PDFSeed-consumption watermelon tend to have larger-sized seeds, while flesh-consumed watermelon often require relatively smaller seed. Therefore, the seed size of watermelon has received extensive attention from consumers and breeders. However, the study on the natural variation and genetic mechanism of watermelon seed size is not clear enough.
View Article and Find Full Text PDFA SNP mutation in Clbl gene encoding TERMINAL FLOWER 1 protein is responsible for watermelon branchless. Lateral branching is one of the most important traits, which directly determines plant architecture and crop productivity. Commercial watermelon has the characteristics of multiple lateral branches, and it is time-consuming and labor-costing to manually remove the lateral branches in traditional watermelon cultivation.
View Article and Find Full Text PDFAccumulation patterns and gene regulatory networks of sugars and cucurbitacins and related primary and secondary metabolites during cultivated watermelon 'Cheng Lan' and wild watermelon 'PI 632,751' fruit development were identified. Metabolites are the end products of cellular regulatory processes and play important roles in fruit taste formation. However, comprehensive studies on the accumulation patterns of watermelon fruit metabolites and transcriptional regulatory networks are still scarce.
View Article and Find Full Text PDFFlesh firmness of watermelon is an important quality trait for commercial fruit values, including fruit storability, transportability, and shelf life. To date, knowledge of the gene networks underlying this trait is still limited. Herein, we used weighted genes co-expression network analysis (WGCNA) based on correlation and the association of phenotypic data (cell wall contents) with significantly differentially expressed genes between two materials, a near isogeneic line "HWF" (with high average flesh firmness) and inbred line "203Z" (with low average flesh firmness), to identify the gene networks responsible for changes in fruit flesh firmness.
View Article and Find Full Text PDFMetabolites have been reported as the main factor that influences the fruit flavor of watermelon. But the comprehensive study on the dynamics of metabolites during the development of watermelon fruit is not up-to-date. In this study, metabolome and transcriptome datasets of 'Crimson' watermelon fruit at four key developmental stages were generated.
View Article and Find Full Text PDFGrafting has been reported as a factor regulating the metabolome of a plant. Therefore, a comprehensive metabolic profile and comparative analysis of metabolites were conducted from fully mature fruit of pumpkin-grafted watermelon (PGW) and a self-rooted watermelon (SRW). Widely targeted LC-ESI-MS/MS metabolomics approach facilitated the simultaneous identification and quantification of 339 metabolites across PGW and SRW.
View Article and Find Full Text PDFBackground: Fruit flesh color in watermelon (Citrullus lanatus) is a great index for evaluating the appearance quality and a key contributor influencing consumers' preferences. But the molecular mechanism of this intricate trait remains largely unknown. Here, the carotenoids and transcriptome dynamics during the fruit development of cultivated watermelon with five different flesh colors were analyzed.
View Article and Find Full Text PDFWatermelon () is one of the most nutritional fruits that is widely distributed in the whole world. The nutritional compositions are mainly influenced by the genotype and environment. However, the metabolomics of different domestication status and different flesh colors watermelon types is not fully understood.
View Article and Find Full Text PDFThe organoleptic qualities of watermelon fruit are defined by the sugar and organic acid contents, which undergo considerable variations during development and maturation. The molecular mechanisms underlying these variations remain unclear. In this study, we used transcriptome profiles to investigate the coexpression patterns of gene networks associated with sugar and organic acid metabolism.
View Article and Find Full Text PDFSeed coat color is an important trait highly affecting the seed quality and flesh appearance of watermelon (). However, the molecular regulation mechanism of seed coat color in watermelon is still unclear. In the present study, genetic analysis was performed by evaluating F, F and BC populations derived from two parental lines (9904 with light yellow seeds and Handel with black seeds), suggesting that a single dominant gene controls the black seed coat.
View Article and Find Full Text PDFGrafting has been reported as a factor that influences fruit quality. However, a comprehensive study of the metabolic profile related to fruit quality and the underlying molecular mechanism in grafted watermelon has not been carried out. Metabolomics and transcriptome analysis were performed on both pumpkin-grafted watermelon and ungrafted watermelon at different developmental stages.
View Article and Find Full Text PDFPlants with shorter internodes are suitable for high-density planting, lodging resistance and the preservation of land resources by improving yield per unit area. In this study, we identified a locus controlling the short internode trait in watermelon using Zhengzhouzigua (long internode) and Duan125 (short internode) as mapping parents. Genetic analysis indicated that F plants were consistent with long internode plants, which indicates that the long internode was dominant over the short internode.
View Article and Find Full Text PDFFruit characteristics of sweet watermelon are largely the result of human selection. Here we report an improved watermelon reference genome and whole-genome resequencing of 414 accessions representing all extant species in the Citrullus genus. Population genomic analyses reveal the evolutionary history of Citrullus, suggesting independent evolutions in Citrullus amarus and the lineage containing Citrullus lanatus and Citrullus mucosospermus.
View Article and Find Full Text PDFClCG08G017810 (ClCGMenG) encoding a 2-phytyl-1,4-beta-naphthoquinone methyltransferase protein is associated with formation of dark green versus light green rind color in watermelon. Rind color is an important agronomic trait in watermelon [Citrullus lanatus (Thunb.) Matsum.
View Article and Find Full Text PDFGoblet cell loss, which leads to the reduction of mucin secretion, is a hallmark of ulcerative colitis (UC). We previously reported that steroid receptor coactivator 3 (SRC-3), a transcriptional coactivator, contributes to host defense against by recruiting neutrophils, suggesting a role of SRC-3 in intestine homeostasis. However, the biological role of SRC-3 in UC remains unclear.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2018
Salinity is a major abiotic stress factor that affects crop productivity. Roots play an important role in salt stress in plants. Watermelon is a salt-sensitive crop; however, tetraploid watermelon seedlings are more tolerant to salt stress than their homogenotype diploid ancestors.
View Article and Find Full Text PDFWatermelon ( L.) is an important horticultural crop that is grown worldwide and has a high economic value. To dissect the loci associated with important horticultural traits and to analyze the genetic and genomic information of this species, a high-density genetic map was constructed based on whole-genome resequencing (WGR), a powerful high-resolution method for single-nucleotide polymorphism (SNP) marker development, genetic map construction, and gene mapping.
View Article and Find Full Text PDF