Publications by authors named "Xuqi Wang"

The spectral reflectance provides valuable information regarding vegetation growth and plays an important role in agriculture, forestry, and grassland management. In this study, a small, portable vegetation canopy reflectance (VCR) sensor that can operate throughout the day was developed. The sensor includes two optical bands at 710 nm and 870 nm, with the light separated by filters, and has a field of view of 28°.

View Article and Find Full Text PDF

Background: Crop pests seriously affect the yield and quality of crops. Accurately and rapidly detecting and segmenting insect pests in crop leaves is a premise for effectively controlling insect pests.

Methods: Aiming at the detection problem of irregular multi-scale insect pests in the field, a dilated multi-scale attention U-Net (DMSAU-Net) model is constructed for crop insect pest detection.

View Article and Find Full Text PDF

A growing body of experimental evidence suggests that microRNAs (miRNAs) are closely associated with specific human diseases and play critical roles in their development and progression. Therefore, identifying miRNA related to specific diseases is of great significance for disease screening and treatment. In the early stages, the identification of associations between miRNAs and diseases demanded laborious and time-consuming biological experiments that often carried a substantial risk of failure.

View Article and Find Full Text PDF

Crop pests seriously affect the yield and quality of crop. To timely and accurately control crop pests is particularly crucial for crop security, quality of life and a stable agricultural economy. Crop pest detection in field is an essential step to control the pests.

View Article and Find Full Text PDF

Accurate and rapid identification of apple leaf diseases is the basis for preventing and treating apple diseases. However, it is challenging to identify apple leaf diseases due to their various symptoms, different colors, irregular shapes, uneven sizes, and complex backgrounds. To reduce computational cost and improve training results, a dilated convolution capsule network (DCCapsNet) is constructed for apple leaf disease identification based on a capsule network (CapsNet) and two dilated Inception modules with different dilation rates.

View Article and Find Full Text PDF