How to address the resistance of cisplatin (CDDP) has always been a clinical challenge. The resistance mechanism of platinum-based drugs is very complex, including nuclear DNA damage repair, apoptosis escape, and tumor metabolism reprogramming. Tumor cells can switch between mitochondrial oxidative phosphorylation (OXPHOS) and glycolysis and develop resistance to chemotherapy drugs through metabolic variability.
View Article and Find Full Text PDFCancer poses a significant threat to human life and health. Chemotherapy is currently one of the effective cancer treatments, but many chemotherapy drugs have cell toxicity, low solubility, poor stability, a narrow therapeutic window, and unfavorable pharmacokinetic properties. To solve the above problems, target drug delivery to tumor cells, and reduce the side effects of drugs, an anti-tumor drug delivery system based on tumor microenvironment has become a focus of research in recent years.
View Article and Find Full Text PDFIntroduction: Immune regulatory small molecule JQ1 can block its downstream effector PD-L1 pathway and effectively reverse the PD-L1 upregulation induced by doxorubicin (DOX). So the synergistic administration of chemotherapeutic drug DOX and JQ1 is expected to increase the sensitivity of tumors to immune checkpoint therapy and jointly enhance the body's own immunity, thus effectively killing tumor cells. Therefore, a drug delivery system loaded with DOX and JQ1 was devised in this study.
View Article and Find Full Text PDFInt J Biol Macromol
August 2024
Proteolysis targeting chimeras (PROTACs) can use the intrinsic protein degradation system in cells to degrade pathogenic target proteins, and are currently a revolutionary frontier of development strategy for tumor treatment with small molecules. However, the poor water solubility, low cellular permeability, and off-target side effects of most PROTACs have prevented them from passing the preclinical research stage of drug development. This requires the use of appropriate delivery systems to overcome these challenging hurdles and ensure precise delivery of PROTACs towards the tumor site.
View Article and Find Full Text PDFJ Nanobiotechnology
October 2023
The development of nanotechnology has provided numerous possibilities for the diagnosis and treatment of cancer. Paradoxically, some in vivo experimental studies have also shown that nanoparticles (NPs) could promote tumor progression, but the specific mechanism is not yet clear. Primary tumors can release extracellular vesicles (EVs) which can promote the inoculation and growth of tumor cells that have metastasized to distant organs.
View Article and Find Full Text PDFUnlabelled: Mesenchymal stem cell-derived exosomes (MSCs-exo) can be used for treating Alzheimer's disease (AD) by promoting amyloid-β (Aβ) degradation, modulating immune responses, protecting neurology, promoting axonal growth, and improving cognitive impairment. Increasing evidence suggests that the alteration of gut microbiota is closely related to the occurrence and development of Alzheimer's disease. In this study, we hypothesized that dysbiosis of gut microbiota might limit the therapy of MSCs-exo, and the application of antibiotics would improve the therapy.
View Article and Find Full Text PDFNanodrug delivery systems have been widely used in disease treatment. However, weak drug targeting, easy to be cleared by the immune system, and low biocompatibility are great obstacles for drug delivery. As an important part of cell information transmission and behavior regulation, cell membrane can be used as drug coating material which represents a promising strategy and can overcome these limitations.
View Article and Find Full Text PDFIntroduction: Osteosarcoma tumors are the most common malignant bone tumors in children and adolescents. Their treatment usually requires surgical removal of all detectable cancerous tissue and multidrug chemotherapy; however, the prognosis for patients with unresectable or recurrent osteosarcoma is unfavorable. To make chemotherapy safer and more effective for osteosarcoma patients, biomimetic nanoparticles (NPs) camouflaged by mesenchymal stem cell membranes (MSCMs) were synthesized to induce osteosarcoma cell apoptosis by co-delivering the anticancer drug doxorubicin hydrochloride(DOX) and a small interfering RNA (siRNA).
View Article and Find Full Text PDFPatients with cholangiocarcinoma (CCA) often have an unfavorable prognosis because of its insidious nature, low resectability rate, and poor response to anticancer drugs and radiotherapy, which makes early detection and treatment difficult. At present, CCA has a five-year overall survival rate (OS) of only 5%, despite advances in therapies. New an increasing number of evidence suggests that nanoplatforms may play a crucial role in enhancing the pharmacological effects and in reducing both short- and long-term side effects of cancer treatment.
View Article and Find Full Text PDFBiomed Pharmacother
November 2022
Prostate cancer (PCa) is the most common new cancer case and the second most fatal malignancy in men. Surgery, endocrine therapy, radiotherapy and chemotherapy are the main clinical treatment options for PCa. However, most prostate cancers can develop into castration-resistant prostate cancer (CRPC), and due to the invasiveness of prostate cancer cells, they become resistant to different treatments and activate tumor-promoting signaling pathways, thereby inducing chemoresistance, radioresistance, ADT resistance, and immune resistance.
View Article and Find Full Text PDFBackground: Ureteral granulation tissue hemangiomas are rare benign vascular lesions, and they may be clinically asymptomatic or present with massive or recurrent hematuria. Sometimes hemangiomas are difficult to distinguish from malignant ureteral tumors, and most ureteral hemangiomas are confirmed by postoperative pathological examination. This article aims to present a case of granulation tissue-type hemangioma of the ureter and briefly review the current literature on this condition.
View Article and Find Full Text PDFProgrammed cell death ligand 1 (PD-L1) blockade has achieved great success in cancer immunotherapy. PD-L1 siRNA can restore the immune anti-tumor activity of T cells by downregulating the level of PD-L1 on tumor cells, but the efficiency of PD-1/PD-L1 monotherapy is relatively low. Doxorubicin (DOX) can induce tumor cell apoptosis, and then increase the release of tumor antigen.
View Article and Find Full Text PDFPurpose: Nanoparticle (NP)-based chemo-photothermal therapy (CPT) has been shown to be a promising non-invasive approach for antitumor treatment. However, NPs must overcome the limitations of opsonization, clearance of the reticuloendothelial system, and ineffective targeting of tumor tissue sites. To solve these problems, stem cell membrane (SCM)-camouflaged polydopamine nanoparticles (PDA@SCM NPs) carrying the hydrophobic anticancer drug 7-ethyl-10-hydroxycamptothecin (SN38) were constructed for CPT of malignant bone tumors.
View Article and Find Full Text PDFProteolysis targeting chimeras (PROTACs) are hetero-bifunctional molecules that could simultaneously bind to the target protein and the E3 ubiquitin ligase, thereby leading to selective degradation of the target protein. Polo-like kinase 1 (PLK1) and bromodomain 4 (BRD4) are both attractive therapeutic targets in acute myeloid leukemia (AML). Here, we developed a small-molecule BRD4 and PLK1 degrader HBL-4 based on PROTAC technology, which leads to fast, efficient, and prolonged degradation of BRD4 and PLK1 in MV4-11 cells tested in vitro and vivo, and potent anti-proliferation and BRD4 and PLK1 degradation ability in human acute leukemia MOLM-13 and KG1 cells.
View Article and Find Full Text PDFProstate carcinoma is a global health problem and is estimated to be diagnosed in 1.1 million men/year, making this malignancy the second most frequently diagnosed cancer in males worldwide. micro RNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression at the post-transcriptional level.
View Article and Find Full Text PDFBiomimetic cell membrane coated nanoparticles (NPs) with desirable features have been extensively applied for various personalized biomedicine. However, there have not been relative explorations by employing the membrane nanocomplexes for small interfering RNA (siRNA) delivery. Herein, FeO@PDA NPs with good photothermal capability were applied for efficient siRNA loading and delivery, which were then coated by mesenchymal stem cells (MSCs) to form a membrane.
View Article and Find Full Text PDFProstate cancer is the second most common cancer in men worldwide. This study focused to clarify the roles of Metadherin (MTDH) and miR-342-3p in prostate cancer. We identified that MTDH was up-regulated and miR-342-3p was down-regulated in the prostate tissues, and there is an inverse correlation between MTDH and miR-342-3p.
View Article and Find Full Text PDFAu nanorods (AuNRs) have attracted extensive attention in diagnosis and therapy, because of their excellent photothermal effects. Although many of attempts have been employed to prepare AuNRs with a good-size monodispersity, facile and feasible preparation methods are still welcomed in consideration of theranostics-related photothermal applications. In this work, AuNRs are prepared through a seedless method using hydroquinone as the reductant.
View Article and Find Full Text PDFThe present study aimed to explore the relationship between DNA methylation and breast cancer under different cell culture conditions. MCF‑7 breast cancer cells were cultured in two‑dimensional (2D), three‑dimensional (3D) and orthotopic transplantation (Ti) adhesion substrates. Principal component analysis (PCA) was used for global visualization of these three samples.
View Article and Find Full Text PDFThe present study aimed to explore whether culture method had an influence on DNA methylation in colorectal cancer (CRC). In the present study, CRC cells were cultured in two-dimensional (2D), three-dimensional (3D) and mouse orthotopic transplantation (Tis) cultures. Principal component analysis (PCA) was used for global visualization of the three samples.
View Article and Find Full Text PDFMultifunctional nanocomposites that have multiple therapeutic functions together with real-time imaging capabilities have attracted intensive concerns in the diagnosis and treatment of cancer. This study developed epidermal growth factor receptor (EGFR) antibody-directed polydopamine-coated FeO nanoparticles (FeO@PDA NPs) for magnetic resonance imaging and antitumor chemo-photothermal therapy. The synthesized FeO@PDA-PEG-EGFR-DOX NPs revealed high storage capacity for doxorubicin (DOX) and high photothermal conversion efficiency.
View Article and Find Full Text PDFAims/introduction: To investigate the ability of human amniotic fluid stem cells (hAFSCs) to differentiate into insulin-producing cells.
Materials And Methods: hAFSCs were induced to differentiate into pancreatic cells by a multistep protocol. The expressions of pancreas-related genes and proteins, including pancreatic and duodenal homeobox-1, insulin, and glucose transporter 2, were detected by polymerase chain reaction and immunofluorescence.
The highly conserved extracellular domain of M2 protein (M2e) of influenza A viruses has limited immunogenicity on its own. Hence, aiming to enhance immunogenicity of M2e protein, optimal approaches remain to be established. In this study, we created recombinant fusion protein vaccines by linking M2e consensus sequence of influenza A viruses with C-terminal domain of human serum albumin (HSA).
View Article and Find Full Text PDFHistone modification plays an important role in maintaining pluripotency and self-renewal of embryonic stem cells (ESCs). The histone acetyltransferase MOF is a key regulator of ESCs; however, the role of MOF in the process of reprogramming back to induced pluripotent stem cells (iPSCs) remains unclear. In this study, we investigated the function of MOF on the generation of iPSCs.
View Article and Find Full Text PDFOncostatin M (OSM) is a multifunctional cellular regulator that belongs to the IL-6 subfamily and can act on a wide variety of cells, which has potential roles in the regulation of gene activation, cell survival, proliferation and differentiation. In order to achieve the higher level yield of recombinant human Oncostatin M (rhOSM), we determined the optimal pH condition of rhOSM expressed in the methylotrophic yeast Pichia pastoris X-33 and carried out the fermentation culture of rhOSM in 80 L fermentor in a fed-batch mode. SDS-PAGE and Western blotting assays demonstrated that rhOSM was successfully expressed and secreted into the culture medium with an apparent molecular weight of 28 kDa.
View Article and Find Full Text PDF