Previous efforts from our laboratory demonstrated that (E)-3-((3-(E)-vinylaryl)-1H-indazol-6-yl)methylene)-indolin-2-ones are potent PLK4 inhibitors with in vivo anticancer efficacy upon IP dosing. As part of a continued effort to develop selective and orally efficacious inhibitors, we examined variations on this theme wherein 'directly-linked' aromatics, pendant from the indazole core, replace the arylvinyl moiety. Herein, we describe the design and optimization of this series which was ultimately superseded by (3-aryl-1H-indazol-6-yl)spiro[cyclopropane-1,3'-indolin]-2'-ones.
View Article and Find Full Text PDFPrevious publications from our laboratory have introduced novel inhibitors of Polo-like kinase 4 (PLK4), a mitotic kinase identified as a potential target for cancer therapy. The search for potent and selective PLK4 inhibitors yielded (E)-3-((1Hindazol-6-yl)methylene)indolin-2-ones, which were superseded by the bioisosteric 2-(1H-indazol-6-yl)spiro[cyclopropane-1,3'-indolin]-2'-ones, e.g.
View Article and Find Full Text PDFTTK kinase was identified by in-house siRNA screen and pursued as a tractable, novel target for cancer treatment. A screening campaign and systematic optimization, supported by computer modeling led to an indazole core with key sulfamoylphenyl and acetamido moieties at positions 3 and 5, respectively, establishing a novel chemical class culminating in identification of 72 (CFI-400936). This potent inhibitor of TTK (IC50=3.
View Article and Find Full Text PDFThe family of Polo-like kinases is important in the regulation of mitotic progression; this work keys on one member, namely Polo-like kinase 4 (PLK4). PLK4 has been identified as a candidate anticancer target which prompted a search for potent and selective inhibitors of PLK4. The body of the paper describes lead generation and optimization work which yielded nanomolar PLK4 inhibitors.
View Article and Find Full Text PDFTumor cells gain a survival/growth advantage by adapting their metabolism to respond to environmental stress, a process known as metabolic transformation. The best-known aspect of metabolic transformation is the Warburg effect, whereby cancer cells up-regulate glycolysis under aerobic conditions. However, other mechanisms mediating metabolic transformation remain undefined.
View Article and Find Full Text PDFElevated levels of epidermal growth factor receptor (EGFR) have been detected in a variety of human cancers. Several reports have demonstrated that the Type III EGF receptor deletion-mutant (EGFRvIII) is frequently detected in various human cancers, including breast cancer. We generated and characterized monoclonal antibody against EGFRvIII.
View Article and Find Full Text PDFRecently, we characterized tumor suppressor candidate 5 (Tusc5) as an adipocyte-neuron PPARgamma target gene. Our objective herein was to identify additional genes that display distinctly high expression in fat and neurons, because such a pattern could signal previously uncharacterized functional pathways shared in these disparate tissues. gamma-Synuclein, a marker of peripheral and select central nervous system neurons, was strongly expressed in white adipose tissue (WAT) and peripheral nervous system ganglia using bioinformatics and quantitative PCR approaches.
View Article and Find Full Text PDFApoptosis plays a critical role in cellular homeostasis during development, immune responses, and tumorigenesis. Recent studies have identified a number of genes that control this process. We report here our identification of a novel cell survival-related gene (SRG) from a human expression cDNA library by functional cloning.
View Article and Find Full Text PDFEGFRvIII is a tumor specific, ligand-independent, constitutively active variant of the epidermal growth factor receptor. Its expression has been detected in many human malignancies including breast cancer. No detectable level of EGFRvIII has, however, been observed in adult tissues, including normal breast tissues.
View Article and Find Full Text PDFPlatelets express apoptotic markers during storage, while aging and after stimulation with strong agonists thrombin and collagen. It is unknown if the weak agonists ADP and epinephrine or U46619, a thromboxane analog, induce the expression of apoptotic markers in platelets. To answer this question, we measured phosphatidylserine exposure, gelsolin cleavage and decrease in membrane mitochondrial potential after stimulation with these agonists.
View Article and Find Full Text PDF