Publications by authors named "Xuntao Hu"

This study explores the integration of crop phenology models and machine learning approaches for predicting rice phenology across China, to gain a deeper understanding of rice phenology prediction. Multiple approaches were used to predict heading and maturity dates at 337 locations across the main rice growing regions of China from 1981 to 2020, including crop phenology model, machine learning and hybrid model that integrate both approaches. Furthermore, an interpretable machine learning (IML) using SHapley Additive exPlanation (SHAP) was employed to elucidate influence of climatic and varietal factors on uncertainty in crop phenology model predictions.

View Article and Find Full Text PDF