The development of intelligently released and environmentally safe nanocarriers not only aligns with the sustainable agricultural strategy but also offers a potential solution for controlling severe soil-borne bacterial diseases. Herein, the core-shell structured nanocarrier loaded with honokiol bactericide (honokiol@ZnO-ZIF-8) was synthesized via a one-pot method for the targeted control of Ralstonia solanacearum, the causative agent of tobacco bacterial wilt disease. Results indicated that honokiol@ZnO-ZIF-8 nanoparticles induced bacterial cell membrane and DNA damage through the production of excessive reactive oxygen species (ROS), thereby reducing bacterial cell viability and ultimately leading to bacterial death.
View Article and Find Full Text PDFBackground: Phytophthora capsici, a refractory and model oomycete plant pathogen, especially threatens multiple vegetable crops. A limited number of chemical pesticides play a vital role in controlling oomycete plant diseases. However, this approach often leads to excessive use of chemical agent, exacerbates environmental issues and more and more drug-resistant strains of oomycete.
View Article and Find Full Text PDFBackground: The utilization of non-metallic inorganic nanomaterials for antimicrobial photocatalytic technology has emerged as a promising approach to combat drug-resistant bacteria. Recently, g-C N nanosheets have attracted significant attention due to their exceptional stability, degradability, low cost, and remarkable antibacterial properties. In this study, a facile electrostatic self-assembly approach was utilized to functionalize ZnO nanoparticles with g-C N nanosheets, resulting in the formation of g-C N @ZnO nanoparticle composites.
View Article and Find Full Text PDF