The global diversity of Proterozoic eukaryote fossils is poorly quantified despite its fundamental importance to the understanding of macroevolutionary patterns and dynamics on the early Earth. Here we report a new construction of fossil eukaryote diversity from the Paleoproterozoic to early Cambrian based on a comprehensive data compilation and quantitative analyses. The resulting taxonomic richness curve verifies Cryogenian glaciations as a major divide that separates the "Boring Billion" and Ediacaran periods, with the former characterized by a prolonged stasis, and the latter by greater diversity, more-rapid turnover, and multiple radiations and extinctions.
View Article and Find Full Text PDFSponges are the most basal metazoan phylum and may have played important roles in modulating the redox architecture of Neoproterozoic oceans. Although molecular clocks predict that sponges diverged in the Neoproterozoic era, their fossils have not been unequivocally demonstrated before the Cambrian period, possibly because Precambrian sponges were aspiculate and non-biomineralized. Here we describe a late-Ediacaran fossil, Helicolocellus cantori gen.
View Article and Find Full Text PDFMacrofossils with unambiguous biogenic origin and predating the one-billion-year-old multicellular fossils Bangiomorpha and Proterocladus interpreted as crown-group eukaryotes are quite rare. Horodyskia is one of these few macrofossils, and it extends from the early Mesoproterozoic Era to the terminal Ediacaran Period. The biological interpretation of this enigmatic fossil, however, has been a matter of controversy since its discovery in 1982, largely because there was no evidence for the preservation of organic walls.
View Article and Find Full Text PDFChlorophytes (representing a clade within the Viridiplantae and a sister group of the Streptophyta) probably dominated marine export bioproductivity and played a key role in facilitating ecosystem complexity before the Mesozoic diversification of phototrophic eukaryotes such as diatoms, coccolithophorans and dinoflagellates. Molecular clock and biomarker data indicate that chlorophytes diverged in the Mesoproterozoic or early Neoproterozoic, followed by their subsequent phylogenetic diversification, multicellular evolution and ecological expansion in the late Neoproterozoic and Palaeozoic. This model, however, has not been rigorously tested with palaeontological data because of the scarcity of Proterozoic chlorophyte fossils.
View Article and Find Full Text PDFThe lower-middle Hetang Formation (Cambrian Stage 2-3) deposited in slope-basinal facies in South China is well-known for its preservation of the earliest articulated sponge fossils, providing an important taphonomic window into the Cambrian explosion. However, the Hetang Formation also hosts a number of problematic animal fossils that have not been systematically described. This omission results in an incomplete picture of the Hetang biota and limits its contribution to the understanding of the early evolution of animals.
View Article and Find Full Text PDFThe origin of motility in bilaterian animals represents an evolutionary innovation that transformed the Earth system. This innovation probably occurred in the late Ediacaran period-as evidenced by an abundance of trace fossils (ichnofossils) dating to this time, which include trails, trackways and burrows. However, with few exceptions, the producers of most of the late Ediacaran ichnofossils are unknown, which has resulted in a disconnection between the body- and trace-fossil records.
View Article and Find Full Text PDFMost sponges have biomineralized spicules. Molecular clocks indicate sponge classes diverged in the Cryogenian, but the oldest spicules are Cambrian in age. Therefore, sponges either evolved spiculogenesis long after their divergences or Precambrian spicules were not amenable to fossilization.
View Article and Find Full Text PDFEdiacaran trace fossils provide key paleontological evidence for the evolution of early animals and their behaviors. Thus far, however, this fossil record has been limited to simple surface trails and relatively shallow burrows. We report possible trackways, preserved in association with burrows, from the terminal Ediacaran Shibantan Member (ca.
View Article and Find Full Text PDFCyanobacteria were the ultimate ancestor of all plastids and, for much of Earth's history, the only source of biogenic oxygen and a major source of fixed carbon and nitrogen. One cyanobacterial clade, subsections IV+V, is characterized by multicellularity and cell differentiation, with many members bearing specialized nitrogen-fixing (or diazotrophic) heterocysts and encysting akinetes [1-3]. Molecular clock estimates of the divergence time of this clade are highly variable, ranging from ∼2,000 Ma (mega-annum) [4-9] to ∼500 Ma [10].
View Article and Find Full Text PDFMorphology-based phylogenetic analyses support the monophyly of the Scalidophora (Kinorhyncha, Loricifera, Priapulida) and Nematoida (Nematoda, Nematomorpha), together constituting the monophyletic Cycloneuralia that is the sister group of the Panarthropoda. Kinorhynchs are unique among living cycloneuralians in having a segmented body with repeated cuticular plates, longitudinal muscles, dorsoventral muscles, and ganglia. Molecular clock estimates suggest that kinorhynchs may have diverged in the Ediacaran Period.
View Article and Find Full Text PDFPhosphorites of the Ediacaran Doushantuo Formation (∼600 million years old) yield spheroidal microfossils with a palintomic cell cleavage pattern. These fossils have been variously interpreted as sulphur-oxidizing bacteria, unicellular protists, mesomycetozoean-like holozoans, green algae akin to Volvox, and blastula embryos of early metazoans or bilaterian animals. However, their complete life cycle is unknown and it is uncertain whether they had a cellularly differentiated ontogenetic stage, making it difficult to test their various phylogenetic interpretations.
View Article and Find Full Text PDFEdiacara fossils are central to our understanding of animal evolution on the eve of the Cambrian explosion, because some of them likely represent stem-group marine animals. However, some of the iconic Ediacara fossils have also been interpreted as terrestrial lichens or microbial colonies. Our ability to test these hypotheses is limited by a taphonomic bias that most Ediacara fossils are preserved in sandstones and siltstones.
View Article and Find Full Text PDFOn the basis of putative nuclei and endospores, Huldtgren et al. (Reports, 23 December 2011, p. 1696) propose that embryo-like Doushantuo microfossils are nonmetazoan holozoans akin to mesomycetozoeans.
View Article and Find Full Text PDFThe deep-water Avalon biota (about 579 to 565 million years old) is often regarded as the earliest-known fossil assemblage with macroscopic and morphologically complex life forms. It has been proposed that the rise of the Avalon biota was triggered by the oxygenation of mid-Ediacaran deep oceans. Here we report a diverse assemblage of morphologically differentiated benthic macrofossils that were preserved largely in situ as carbonaceous compressions in black shales of the Ediacaran Lantian Formation (southern Anhui Province, South China).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2008
Recent geochemical data from Oman, Newfoundland, and the western United States suggest that long-term oxidation of Ediacaran oceans resulted in progressive depletion of a large dissolved organic carbon (DOC) reservoir and potentially triggered the radiation of acanthomorphic acritarchs, algae, macroscopic Ediacara organisms, and, subsequently, motile bilaterian animals. However, the hypothesized coupling between ocean oxidation and evolution is contingent on the reliability of continuous geochemical and paleontological data in individual sections and of intercontinental correlations. Here we report high-resolution geochemical data from the fossil-rich Doushantuo Formation (635-551 Ma) in South China that confirm trends from other broadly equivalent sections and highlight key features that have not been observed in most sections or have received little attention.
View Article and Find Full Text PDFPhosphatized microfossils in the Ediacaran (635-542 Myr ago) Doushantuo Formation, south China, have been interpreted as the embryos of early animals. Despite experimental demonstration that embryos can be preserved, microstructural evidence that the Doushantuo remains are embryonic and an unambiguous record of fossil embryos in Lower Cambrian rocks, questions about the phylogenetic relationships of these fossils remain. Most recently, some researchers have proposed that Doushantuo microfossils may be giant sulphur-oxidizing bacteria comparable to extant Thiomargarita sp.
View Article and Find Full Text PDFBailey et al. propose that the Ediacaran microfossils Megasphaera and Parapandorina, previously interpreted as animal resting eggs and blastula embryos, represent Thiomargarita-like sulphide-oxidizing bacteria, claiming that this interpretation better explains their abundance and taphonomy. Here we highlight important observations that significantly weaken the authors' conclusions.
View Article and Find Full Text PDFStereoblastic embryos from the Doushantuo Formation of China exhibit occasional asynchronous cell division, with diminishing blastomere volume as cleavage proceeded. Asynchronous cell division is common in modern embryos, implying that sophisticated mechanisms for differential cell division timing and embryonic cell lineage differentiation evolved before 551 million years ago. Subcellular structures akin to organelles, coated yolk granules, or lipid vesicles occur in these embryos.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2005
Ediacara fossils are among the oldest known macroscopic and complex life forms. Their bodyplan, ecology, and phylogenetic affinities have been controversial. On the basis of taphonomic observations, Seilacher [Seilacher, A.
View Article and Find Full Text PDFThe fossil record of fungi and lichens is scarce. Here we report the discovery of lichen-like fossils, involving filamentous hyphae closely associated with coccoidal cyanobacteria or algae, preserved in marine phosphorite of the Doushantuo Formation (between 551 and 635 million years old) at Weng'an, South China. These fossils indicate that fungi developed symbiotic partnerships with photoautotrophs before the evolution of vascular plants.
View Article and Find Full Text PDFPhosphatic sediments of the Late Neoproterozoic (ca. 600 million years old [Myr]) Doushantuo Formation at Weng'an, South China, contain fossils of multicellular algae preserved in anatomical detail. As revealed by light microscopy and scanning electron microscopy, these fossils include both simple pseudoparenchymatous thalli with apical growth but no cortex-medulla differentiation and more complex thalli characterized by cortex-medulla differentiation and structures interpretable as carposporophytes, suggesting a multiphasic life cycle.
View Article and Find Full Text PDF