Genetic resistance to blackleg (Leptosphaeria maculans, Lm) of canola (Brassica napus, Bn) has been extensively studied, but the mechanisms underlying the host-pathogen interaction are still not well understood. Here, a comparative transcriptome analysis was performed on a resistant doubled haploid Bn line carrying the resistance gene Rlm1 following inoculation with a virulent (avrLm1) or avirulent (AvrLm1) Lm isolate on cotyledons. A total of 6999 and 3015 differentially expressed genes (DEGs) were identified, respectively, in inoculated local tissues with compatible (susceptible) and incompatible (resistant) interactions.
View Article and Find Full Text PDFThe fungal pathogen Leptosphaeria maculans causes blackleg disease on canola and rapeseed (Brassica napus) in many parts of the world. A B. napus cultivar, 'Quinta', has been widely used for the classification of L.
View Article and Find Full Text PDFClubroot, caused by , is an important disease of canola () in western Canada and worldwide. In this study, a clubroot resistance gene () was identified and fine mapped in Chinese cabbage cv. "Jazz" using single-nucleotide polymorphisms (SNP) markers identified from bulked segregant RNA sequencing (BSR-Seq) and molecular markers were developed for use in marker assisted selection.
View Article and Find Full Text PDFBackground: The protist Plasmodiophora brassicae is a biotrophic soil-borne pathogen that causes clubroot on Brassica crops worldwide. Clubroot disease is a serious threat to the 8 M ha of canola (Brassica napus) grown annually in western Canada. While host resistance is the key to clubroot management, sources of resistance are limited.
View Article and Find Full Text PDFA cDNA (BG-15) was isolated through differential screening of a cDNA library made from an ABA-treated bromegrass (Bromus inermis Leyss) suspension cell culture. The 819 bp pair cDNA encoded a 174 amino acid polypeptide with a calculated molecular mass of 18.08 kD and isolectric point of 7.
View Article and Find Full Text PDFThe objective was to investigate the expression of a lipid transfer protein gene (LTP) both in bromegrass (Bromus inermis) cells and seedlings after exposure to abiotic stresses, abscisic acid (ABA), anisomycin, and sphingosine. A full-length cDNA clone BG-14 isolated from bromegrass suspension cell culture encodes a polypeptide of 124 amino acids with typical LTP characteristics, such as a conserved arrangement of cysteine residues. During active stages of cold acclimation LTP expression was up-regulated, whereas at the final stage of cold acclimation LTP transcript level declined to pre-acclimation level.
View Article and Find Full Text PDF