Recent structural characterizations of the p51 and p66 monomers have established an important starting point for understanding the maturation pathway of the human immunodeficiency virus (HIV)-1 reverse transcriptase p66/p51 heterodimer. This process requires a metamorphic transition of the polymerase domain leading to formation of a p66/p66' homodimer that exists as a structural heterodimer. To better understand the drivers for this metamorphic transition, we have performed NMR studies of N-labeled RT216 - a construct that includes the fingers and most of the palm domains.
View Article and Find Full Text PDFFormation of the mature HIV-1 reverse transcriptase (RT) p66/p51 heterodimer requires subunit-specific processing of the p66/p66' homodimer precursor. Since the ribonuclease H (RH) domain contains an occult cleavage site located near its center, cleavage must occur either prior to folding or subsequent to unfolding. Recent NMR studies have identified a slow, subunit-specific RH domain unfolding process proposed to result from a residue tug-of-war between the polymerase and RH domains on the functionally inactive, p66' subunit.
View Article and Find Full Text PDFHIV-1 reverse transcriptase utilizes a metamorphic polymerase domain that is able to adopt two alternate structures that fulfill catalytic and structural roles, thereby minimizing its coding requirements. This ambiguity introduces folding challenges that are met by a complex maturation process. We have investigated this conformational maturation using NMR studies of methyl-labeled RT for the slower processes in combination with molecular dynamics simulations for rapid processes.
View Article and Find Full Text PDFHIV-1 reverse transcriptase (RT), a critical enzyme of the HIV life cycle and an important drug target, undergoes complex and largely uncharacterized conformational rearrangements that underlie its asymmetric folding, dimerization and subunit-selective ribonuclease H domain (RH) proteolysis. In the present article we have used a combination of NMR spectroscopy, small angle X-ray scattering and X-ray crystallography to characterize the p51 and p66 monomers and the conformational maturation of the p66/p66' homodimer. The p66 monomer exists as a loosely structured molecule in which the fingers/palm/connection, thumb and RH substructures are connected by flexible (disordered) linking segments.
View Article and Find Full Text PDFNonnucleoside reverse transcriptase inhibitors (NNRTIs) play a central role in the treatment of AIDS, but their mechanisms of action are incompletely understood. The interaction of the NNRTI nevirapine (NVP) with HIV-1 reverse transcriptase (RT) is characterized by a preference for the open conformation of the fingers/thumb subdomains, and a reported variation of three orders of magnitude between the binding affinity of NVP for RT in the presence or absence of primer/template DNA. To investigate the relationship between conformation and ligand binding, we evaluated the use of methionine NMR probes positioned near the tip of the fingers or thumb subdomains.
View Article and Find Full Text PDFOrai1 is a plasma membrane protein that in its tetrameric form is responsible for calcium influx from the extracellular environment into the cytosol in response to interaction with the Ca(2+)-depletion sensor STIM1. This is followed by a fast Ca(2+)·calmodulin (CaM)-dependent inhibition, resulting from CaM binding to an Orai1 region called the calmodulin binding domain (CMBD). The interaction between Orai1 and CaM at the atomic level remains unknown.
View Article and Find Full Text PDFSIRT1, a NAD(+)-dependent protein deacetylase, is an important regulator in cellular stress response and energy metabolism. While the list of SIRT1 substrates is growing, how the activity of SIRT1 is regulated remains unclear. We have previously reported that SIRT1 is activated by phosphorylation at a conserved Thr522 residue in response to environmental stress.
View Article and Find Full Text PDFHIV-1 reverse transcriptase (RT) contains a C-terminal ribonuclease H (RH) domain on its p66 subunit that can be expressed as a stable, although inactive protein. Recent studies of several RH enzymes demonstrate that substrate binding plays a major role in the creation of the active site. In the absence of substrate, the C-terminal helix E of the RT RNase H domain is dynamic, characterized by severe exchange broadening of its backbone amide resonances, so that the solution characterization of this region of the protein has been limited.
View Article and Find Full Text PDFMethionine residues fulfill a broad range of roles in protein function related to conformational plasticity, ligand binding, and sensing/mediating the effects of oxidative stress. A high degree of internal mobility, intrinsic detection sensitivity of the methyl group, and low copy number have made methionine labeling a popular approach for NMR investigation of selectively labeled protein macromolecules. However, selective labeling approaches are subject to more limited information content.
View Article and Find Full Text PDFThe dimerization of HIV reverse transcriptase (RT), required to obtain the active form of the enzyme, is influenced by mutations, non-nucleoside reverse transcriptase inhibitors (NNRTIs), nucleotide substrates, Mg ions, temperature, and specifically designed dimerization inhibitors. In this study, we have utilized nuclear magnetic resonance (NMR) spectroscopy of the [methyl-(13)C]methionine-labeled enzyme and small-angle X-ray scattering (SAXS) to investigate how several of these factors influence the dimerization behavior of the p51 subunit. The (1)H-(13)C HSQC spectrum of p51 obtained at micromolar concentrations indicates that a significant fraction of the p51 adopts a "p66-like" conformation.
View Article and Find Full Text PDFHIV reverse transcriptase (RT) is a primary target for drug intervention in the treatment of AIDS. We report the first solution NMR studies of [methyl-(13)C]methionine HIV-1 RT, aimed at better understanding the conformational and dynamic characteristics of RT, both in the presence and absence of the non-nucleoside RT inhibitor (NNRTI) nevirapine. The selection of methionine as a structural probe was based both on its favorable NMR characteristics, and on the presence of two important active site methionine residues, M184(66) and M230(66).
View Article and Find Full Text PDFHuman macrophage elastase (MMP-12) plays an important role in inflammatory processes and is involved in a number of physiological or pathological situations, such as conversion of plasminogen into angiostatin, allergic airway inflammation, vascular remodeling or alteration, as well as emphysema, and has been justified as a novel drug target. Here, we report the over-expression in Escherichia coil, purification and refolding of MMP-12 catalytic domain for NMR studies. The primary sequence of expressed protein was identified by means of MALDI-TOF MS, and was confirmed by the MALDI-TOF MS data of trypsin-digested peptides.
View Article and Find Full Text PDFBiochem Biophys Res Commun
October 2006
BmK-betaIT (previously named as Bm32-VI in the literature), an excitatory scorpion beta-toxin, is purified from the venom of the Chinese scorpion Buthus martensii Karsch. It features a primary sequence typical of the excitatory anti-insect toxins: two contiguous Cys residues (Cys37-Cys38) and a shifted location of the fourth disulfide bridges (Cys38-Cys64), and demonstrates bioactivity characteristic of the excitatory beta-toxins. However, it is noteworthy that BmK-betaIT is not conserved with a glutamate residue at the preceding position of the third Cys residue, and is the first example having a non-glutamate residue at the relevant position in the excitatory scorpion beta-toxin subfamily.
View Article and Find Full Text PDFMatrilysin (MMP7) is the smallest member of matrix metalloproteinases (MMPs) family, which are collectively responsible for remodeling of connective tissue. MMP7 plays an essential role in cancer, innate immunity, and in inflammatory disorders, and has been justified as a novel drug target. Here, we report the gene synthesis, overexpression in Escherichia coli, purification and refolding of MMP7.
View Article and Find Full Text PDF