We synthesized the optically active epineoclausenamide by utilizing chiral reagents, such as R-α-methylbenzylamine and S-α-methylbenzylamine, for the resolution of the intermediate (trans-3-phenyl-oxiranecarboxylic acid 12), followed by amide exchange, cyclization, and reduction, unlike previously reported methods. The Meerwein-Ponndorf-Verley reduction was used to asymmetrically reduce neoclausenamidone. A plausible reduction mechanism of this method was elucidated.
View Article and Find Full Text PDFThe aim of the paper is to describe a new synthesis route to obtain synthetic optically active clausenamidone and neoclausenamidone and then use high-performance liquid chromatography (HPLC) to determine the optical purities of these isomers. In the process, we investigated the different chromatographic conditions so as to provide the best separation method. At the same time, a thermodynamic study and molecular simulations were also carried out to validate the experimental results; a brief probe into the separation mechanism was also performed.
View Article and Find Full Text PDF